دورية أكاديمية

Structural and functional comparison of magnesium transporters throughout evolution.

التفاصيل البيبلوغرافية
العنوان: Structural and functional comparison of magnesium transporters throughout evolution.
المؤلفون: Franken GAC; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands., Huynen MA; Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands., Martínez-Cruz LA; Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain., Bindels RJM; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands., de Baaij JHF; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. jeroen.debaaij@radboudumc.nl.
المصدر: Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2022 Jul 12; Vol. 79 (8), pp. 418. Date of Electronic Publication: 2022 Jul 12.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9705402 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-9071 (Electronic) Linking ISSN: 1420682X NLM ISO Abbreviation: Cell Mol Life Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Basel : Springer
Original Publication: Basel ; Boston : Birkhauser, c1997-
مواضيع طبية MeSH: Magnesium*/metabolism , Membrane Transport Proteins*/metabolism, Biological Transport ; Cations, Divalent/metabolism ; Phosphotransferases/metabolism
مستخلص: Magnesium (Mg 2+ ) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg 2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg 2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg 2+ levels, all organisms rely on balanced Mg 2+ influx and efflux via Mg 2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg 2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg 2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg 2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg 2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na + /Mg 2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg 2+ channels provide an additional Mg 2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg 2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg 2+ transport.
(© 2022. The Author(s).)
References: de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. (PMID: 25540137)
Cowan JA (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15(3):225–235. (PMID: 12206389)
Huang SL, Tsai MD (1982) Does the magnesium(II) ion interact with the alpha-phosphate of ATP? An investigation by oxygen-17 nuclear magnetic resonance. Biochemistry 21(5):951–959. (PMID: 7074064)
Cowan JA (1995) Biological chemistry of magnesium. VCH Publishers, Weinheim.
Flachner B et al (2004) Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP. Biochemistry 43(12):3436–3449. (PMID: 15035615)
Vicario PP, Bennun A (1990) Separate effects of Mg2+, MgATP, and ATP4− on the kinetic mechanism for insulin receptor tyrosine kinase. Arch Biochem Biophys 278(1):99–105. (PMID: 2157363)
Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5(4):282–295. (PMID: 15071553)
Wang Z, Cole PA (2014) Catalytic mechanisms and regulation of protein kinases. Methods Enzymol 548:1–21. (PMID: 253996404373616)
Ador L et al (2004) Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase. Biochemistry 43(22):7028–7037. (PMID: 15170340)
Batra VK et al (2006) Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Structure 14(4):757–766. (PMID: 166159161868394)
Sosunov V et al (2003) Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. Embo j 22(9):2234–2244. (PMID: 12727889156065)
Schuwirth BS et al (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310(5749):827–834. (PMID: 16272117)
Zhong S, Bird A, Kopec RE (2021) The metabolism and potential bioactivity of chlorophyll and metallo-chlorophyll derivatives in the gastrointestinal tract. Mol Nutr Food Res 65(7):2000761.
Lee J, Ghosh S, Saier MH Jr (2017) Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae(11). J Phycol 53(3):503–521. (PMID: 283281495591647)
Feord HK et al (2019) A magnesium transport protein related to mammalian SLC41 and bacterial MgtE contributes to circadian timekeeping in a unicellular green alga. Genes (Basel) 10(2):158.
Dalmas O et al (2014) A repulsion mechanism explains magnesium permeation and selectivity in CorA. Proc Natl Acad Sci 111(8):3002–3007. (PMID: 245161463939898)
Snavely MD et al (1989) Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171(9):4761–4766. (PMID: 2670893210277)
Schindl R et al (2007) Mrs2p forms a high conductance Mg2+ selective channel in mitochondria. Biophys J 93(11):3872–3883. (PMID: 178272242099211)
Quamme GA (2010) Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 298(3):C407–C429. (PMID: 19940067)
Takeda H et al (2014) Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat Commun 5:5374. (PMID: 25367295)
Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127(5):525–537. (PMID: 166362022151519)
Topala CN et al (2007) Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41(6):513–523. (PMID: 17098283)
Monteilh-Zoller MK et al (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60. (PMID: 125080532217320)
Guan B, Chen X, Zhang H (2013) Two-electrode voltage clamp. In: Gamper N (ed) Ion channels: methods and protocols. Humana Press, Totowa, pp 79–89.
Hook MJV, Thoreson WB (2014) Whole-cell patch-clamp recording. Current laboratory methods in neuroscience research. Springer, Berlin, pp 353–367.
Silver S (1969) Active transport of magnesium in Escherichia coli. Proc Natl Acad Sci USA 62(3):764–771. (PMID: 4895213223664)
Lusk JE, Kennedy EP (1969) Magnesium transport in Escherichia coli. J Biol Chem 244(6):1653–1655. (PMID: 4886311)
Nelson DL, Kennedy EP (1971) Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J Biol Chem 246(9):3042–3049. (PMID: 4928897)
Hmiel SP et al (1986) Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168(3):1444–1450. (PMID: 3536881213658)
Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genom 3(3):151–169.
Gibson MM et al (1991) Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol 5(11):2753–2762. (PMID: 1779764)
Hmiel SP et al (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171(9):4742–4751. (PMID: 2548998210275)
Moncrief MB, Maguire ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4(5):523–527. (PMID: 10550680)
Eshaghi S et al (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313(5785):354–357. (PMID: 16857941)
Payandeh J, Pai EF (2006) A structural basis for Mg2+ homeostasis and the CorA translocation cycle. Embo J 25(16):3762–3773. (PMID: 169024081553185)
Nordin N et al (2013) Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 451(3):365–374. (PMID: 23425532)
Cleverley RM et al (2015) The Cryo-EM structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions. Biochim Biophys Acta 1848(10):2206–2215. (PMID: 260511274579555)
Matthies D et al (2016) Cryo-EM structures of the magnesium channel CorA Reveal symmetry break upon gating. Cell 164(4):747–756. (PMID: 268716344752722)
Lunin VV et al (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440(7085):833–837. (PMID: 16598263)
Payandeh J, Pfoh R, Pai EF (2013) The structure and regulation of magnesium selective ion channels. Biochim Biophys Acta 1828(11):2778–2792. (PMID: 23954807)
Lerche M et al (2017) Structure and cooperativity of the cytosolic domain of the CorA Mg(2+) channel from Escherichia coli. Structure 25(8):1175-1186.e4. (PMID: 28669631)
Nemchinova M et al (2021) Asymmetric CorA gating mechanism as observed by molecular dynamics simulations. J Chem Inf Model 61(5):2407–2417. (PMID: 338863048154316)
Kowatz T, Maguire ME (2019) Loss of cytosolic Mg(2+) binding sites in the Thermotoga maritima CorA Mg(2+) channel is not sufficient for channel opening. Biochim Biophys Acta Gen Subj 1863(1):25–30. (PMID: 30293964)
Knoop V et al (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genom 274(3):205–216.
Sponder G et al (2010) Lpe10p modulates the activity of the Mrs2p-based yeast mitochondrial Mg2+channel. FEBS J 277(17):3514–3525. (PMID: 20653776)
Gregan J et al (2001) The mitochondrial inner membrane protein Lpe10p, a homologue of Mrs2p, is essential for magnesium homeostasis and group II intron splicing in yeast. Mol Genet Genom 264(6):773–781.
Zsurka G, Gregán J, Schweyen RJ (2001) The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics 72(2):158–168. (PMID: 11401429)
Kolisek M et al (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. Embo J 22(6):1235–1244. (PMID: 12628916151051)
Khan MB et al (2013) Structural and functional characterization of the N-terminal domain of the yeast Mg2+ channel Mrs2. Acta Crystallogr D 69(Pt 9):1653–1664. (PMID: 23999289)
Bui DM et al (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274(29):20438–20443. (PMID: 10400670)
Yamanaka R et al (2016) Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci Rep 6(1):30027. (PMID: 274580514960558)
Merolle L et al (2018) Overexpression of the mitochondrial Mg channel MRS2 increases total cellular Mg concentration and influences sensitivity to apoptosis. Metallomics 10(7):917–928. (PMID: 29952392)
EMBL-EBI (2022) TreeFam - database of animal gene trees. http://www.treefam.org . Accessed 11th Jan 2022.
Gebert M et al (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21(12):4018–4030. (PMID: 199660732814501)
Saito T et al (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54(10):1673–1683. (PMID: 23926064)
Zhao Z et al (2018) Phylogenetic and expression analysis of the magnesium transporter family in pear, and functional verification of PbrMGT7 in pear pollen. J Hortic Sci Biotechnol 93(1):51–63.
Tong M et al (2020) Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLoS ONE 15(10):e0239058. (PMID: 330019807529347)
Schmitz J et al (2013) Membrane protein interactions between different Arabidopsis thaliana MRS2-type magnesium transporters are highly permissive. Biochim et Biophys Acta (BBA) 1828(9):2032–2040.
Lu H-F et al (2020) PhoPQ two-component regulatory system plays a global regulatory role in antibiotic susceptibility, physiology, stress adaptation, and virulence in Stenotrophomonas maltophilia. BMC Microbiol 20(1):312. (PMID: 330547547559202)
Kravchenko U et al (2021) The PhoPQ two-component system is the major regulator of cell surface properties, stress responses and plant-derived substrate utilisation during development of pectobacterium versatile-host plant pathosystems. Front Microbiol. https://doi.org/10.3389/fmicb.2020.621391. (PMID: 10.3389/fmicb.2020.621391335197827843439)
Johnson CR et al (2001) Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis. Mol Microbiol 39(5):1345–1355. (PMID: 11251849)
Cromie MJ, Groisman EA (2010) Promoter and riboswitch control of the Mg2+ transporter MgtA from Salmonella enterica. J Bacteriol 192(2):604–607. (PMID: 19897653)
Cromie MJ et al (2006) An RNA sensor for intracellular Mg(2+). Cell 125(1):71–84. (PMID: 16615891)
Håkansson KO (2009) The structure of Mg-ATPase nucleotide-binding domain at 16 A resolution reveals a unique ATP-binding motif. Acta Crystallogr D 65(Pt 11):1181–1186. (PMID: 19923713)
Mirčevová L et al (1979) Activation of Mg-ATPase (Spectrin-Dependent ATPase) by Ca^2+. Enzyme 24:374–382. (PMID: 160314)
Vrbjar N, Dzurba A, Ziegelhöffer A (1995) Enzyme kinetics and the activation energy of Mg-ATPase in cardiac sarcolemma: ADP as an alternative substrate. Gen Physiol Biophys 14(4):313–321. (PMID: 8720695)
Thiyagarajah P, Lim SC (1986) The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum. Biochem J 235(2):491–498. (PMID: 29432711146712)
Gandhi CR, Ross DH (1988) Characterization of a high-affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes. J Neurochem 50(1):248–256. (PMID: 2961847)
Dhalla NS, Zhao D (1989) Possible role of sarcolemmal Ca2+/Mg2+ ATPase in heart function. Magnes Res 2(3):161–172. (PMID: 2534878)
Szemraj J et al (2005) Magnesium sulfate effect on erythrocyte membranes of asphyxiated newborns. Clin Biochem 38(5):457–464. (PMID: 15820777)
Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. (PMID: 159804611160169)
Kolisek M et al (2019) Magnesium extravaganza: a critical compendium of current research into cellular Mg2+ transporters other than TRPM6/7. In: de Tombe P et al (eds) Reviews of physiology, biochemistry and pharmacology 176. Springer International Publishing, Cham, pp 65–105.
Kwasnicka-Crawford DA et al (2005) Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25–q29 inversion in an individual with language delay. Genomics 86(2):182–194. (PMID: 15925480)
Vallipuram J, Grenville J, Crawford DA (2010) The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. Cell Mol Neurobiol 30(2):233–246. (PMID: 19731010)
Tan J et al (2011) Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. J Biol Chem 286(34):29654–29662. (PMID: 217248493191006)
van Veen S et al (2020) ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578(7795):419–424. (PMID: 31996848)
Cronin SR, Rao R, Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157(6):1017–1028. (PMID: 120580172174042)
Will C et al (2010) Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol 298(5):F1152–F1161.
Lambie EJ et al (2013) CATP-6, a C. elegans Ortholog of ATP13A2 PARK9, Positively Regulates GEM-1, an SLC16A Transporter. PLoS ONE 8(10):202.
Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177(5):1233–1238. (PMID: 7868596176728)
Townsend DE et al (1995) Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in gram-negative and gram-positive bacteria. J Bacteriol 177(18):5350–5354. (PMID: 7665526177332)
Dann CE 3rd et al (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130(5):878–892. (PMID: 17803910)
Hattori M et al (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448(7157):1072–1075. (PMID: 17700703)
Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 289(6):C1369–C1378. (PMID: 16275737)
Tomita A et al (2017) ATP-dependent modulation of MgtE in Mg(2+) homeostasis. Nat Commun 8(1):148. (PMID: 287477155529423)
Hattori M et al (2009) Mg(2+)-dependent gating of bacterial MgtE channel underlies Mg(2+) homeostasis. EMBO J 28(22):3602–3612. (PMID: 197980512782099)
Jin F et al (2021) The structure of MgtE in the absence of magnesium provides new insights into channel gating. PLoS Biol 19(4):e3001231. (PMID: 339054188104411)
Sahni J, Song Y, Scharenberg AM (2012) The B. subtilis MgtE magnesium transporter can functionally compensate TRPM7-deficiency in vertebrate B-Cells. PLoS ONE 7(9):e44452. (PMID: 229702233435302)
Wabakken T et al (2003) The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem Biophys Res Commun 306(3):718–724. (PMID: 12810078)
Sahni J, Nelson B, Scharenberg AM (2007) SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem J 401(2):505–513. (PMID: 16984228)
Goytain A, Quamme GA (2005) Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genom 21(3):337–342.
Kolisek M et al (2008) SLC41A1 is a novel mammalian Mg2+ carrier. J Biol Chem 283(23):16235–16247. (PMID: 183674472414286)
Kolisek M et al (2012) Human gene SLC41A1 encodes for the Na+/Mg2+ exchanger. Am J Physiol Cell Physiol 302(1):C318–C326. (PMID: 22031603)
Mastrototaro L et al (2016) Solute carrier 41A3 encodes for a mitochondrial Mg(2+) efflux system. Sci Rep 6:27999. (PMID: 273022154908428)
Barry G (2013) Hall, building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235. https://doi.org/10.1093/molbev/mst012. (PMID: 10.1093/molbev/mst012)
Goytain A, Quamme GA (2005) Functional characterization of the mouse [corrected] solute carrier, SLC41A2. Biochem Biophys Res Commun 330(3):701–705. (PMID: 15809054)
Sahni J, Scharenberg AM (2013) The SLC41 family of MgtE-like magnesium transporters. Mol Aspects Med 34(2–3):620–628. (PMID: 235068953603280)
Arjona FJ et al (2019) SLC41A1 is essential for magnesium homeostasis in vivo. Pflugers Arch 471(6):845–860. (PMID: 30417250)
de Baaij JH et al (2013) Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg(2+) handling. Am J Physiol Renal Physiol 305(11):F1563–F1573. (PMID: 24089412)
Hess MW et al (2016) Inulin significantly improves serum magnesium levels in proton pump inhibitor-induced hypomagnesaemia. Aliment Pharmacol Ther 43(11):1178–1185. (PMID: 27086738)
Chen YS et al (2021) Crystal structure of an archaeal CorB magnesium transporter. Nat Commun 12(1):4028. (PMID: 341880598242095)
Huang Y et al (2021) Structural basis for the Mg2+ recognition and regulation of the CorC Mg2+ transporter. Sci Adv 7(7):eabe6140. (PMID: 335684877875539)
Wang C-Y et al (2003) Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306:37–44. (PMID: 12657465)
Wang CY et al (2004) Molecular cloning and characterization of the mouse Acdp gene family. BMC Genomics 5(1):7. (PMID: 14723793340383)
Goytain A, Quamme GA (2005) Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol Genom 22(3):382–389.
Hirata Y et al (2014) Mg2+-dependent interactions of ATP with the cystathionine-β-Synthase (CBS) domains of a magnesium transporter *. J Biol Chem 289(21):14731–14739. (PMID: 247067654031528)
Stuiver M et al (2011) CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet 88(3):333–343. (PMID: 213970623059432)
Sponder G et al (2016) Human CNNM2 is not a Mg2+ transporter per se. Pflügers Arch Eur J Physiol 468(7):1223–1240.
de Baaij JH et al (2012) Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem 287(17):13644–13655. (PMID: 223992873340180)
Arjona FJ, de Baaij JHF (2018) CrossTalk opposing view: CNNM proteins are not Na(+) /Mg(2+) exchangers but Mg(2+) transport regulators playing a central role in transepithelial Mg(2+) (re)absorption. J Physiol 596(5):747–750. (PMID: 293837295830416)
Funato Y et al (2018) CrossTalk proposal: CNNM proteins are Na+/Mg2+ exchangers playing a central role in transepithelial Mg2+ (re)absorption. J Physiol 596(5):743–746. (PMID: 293837195830418)
Hardy S et al (2015) The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 34(8):986–995. (PMID: 24632616)
Zhang H et al (2017) PRL3 phosphatase active site is required for binding the putative magnesium transporter CNNM3. Sci Rep 7(1):48. (PMID: 282463905427921)
Giménez-Mascarell P et al (2017) Structural basis of the oncogenic interaction of phosphatase PRL-1 with the magnesium transporter CNNM2. J Biol Chem 292(3):786–801. (PMID: 27899452)
Hardy S et al (2019) Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci USA 116(8):2925–2934. (PMID: 307184346386685)
Zolotarov Y et al (2021) ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cell Mol Life Sci 78(13):5427–5445. (PMID: 340893468257531)
Kollewe A et al (2021) The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. Elife 10:e68544. (PMID: 347669078616561)
Arjona FJ et al (2014) CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet 10(4):e1004267. (PMID: 246992223974678)
Franken GAC et al (2021) The phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2). Hum Mutat 42(4):473–486. (PMID: 336000438248058)
Funato Y, Yamazaki D, Miki H (2017) Renal function of cyclin M2 Mg2+ transporter maintains blood pressure. J Hypertens 35(3):585–592. (PMID: 28033128)
Franken GAC et al (2021) Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Sci Rep 11(1):8217. (PMID: 338592528050252)
Accogli A et al (2019) CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur J Med Genet 62(3):198–203. (PMID: 30026055)
Yamazaki D et al (2013) Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet 9(12):e1003983. (PMID: 243397953854942)
Funato Y et al (2014) Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression. J Clin Invest 124(12):5398–5410. (PMID: 253474734348944)
Parry DA et al (2009) Mutations in CNNM4 Cause Jalili Syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Human Genet 84(2):266–273.
Prasov L et al (2020) Expanding the genotypic spectrum of Jalili syndrome: Novel CNNM4 variants and uniparental isodisomy in a north American patient cohort. Am J Med Genet A 182(3):493–497. (PMID: 320223898041260)
Corral-Rodríguez M et al (2014) Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochem J 464(1):23–34. (PMID: 25184538)
Giménez-Mascarell P et al (2019) Structural insights into the intracellular region of the human magnesium transport mediator CNNM4. Int J Mol Sci 20(24):6279. (PMID: 6940986)
Chen YS et al (2020) Mg(2+)-ATP Sensing in CNNM, a putative magnesium transporter. Structure 28(3):324-335.e4. (PMID: 31864811)
Chen YS et al (2018) The cyclic nucleotide-binding homology domain of the integral membrane protein CNNM mediates dimerization and is required for Mg(2+) efflux activity. J Biol Chem 293(52):19998–20007. (PMID: 303411746311497)
Giménez-Mascarell P et al (2019) Current structural knowledge on the CNNM family of magnesium transport mediators. Int J Mol Sci 20(5):1135. (PMID: 6429129)
Maruyama T et al (2018) Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR. Elife 7:e31596. (PMID: 296118055882242)
Luongo F et al (2018) TRPM6 is essential for magnesium uptake and epithelial cell function in the colon. Nutrients 10(6):784. (PMID: 6024373)
Schmitz C et al (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280(45):37763–37771. (PMID: 16150690)
Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647. (PMID: 16460286)
Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3(1):221–242. (PMID: 237202863775668)
Falcón D et al (2019) TRP channels: current perspectives in the adverse cardiac remodeling. Front Physiol. https://doi.org/10.3389/fphys.2019.00159. (PMID: 10.3389/fphys.2019.00159308813106406032)
Zou ZG et al (2019) TRPM7, magnesium, and signaling. Int J Mol Sci 20(8):1877. (PMID: 6515203)
Chubanov V et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5:e20914. (PMID: 279918525218537)
Woudenberg-Vrenken TE et al (2011) Transient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia. Nephron Physiol 117(2):11–19.
Walder RY et al (2009) Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet 18(22):4367–4375. (PMID: 196923512766295)
Himmel NJ, Cox DN (1933) Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc R Soc B 2020(287):20201309.
Peng G, Shi X, Kadowaki T (2015) Evolution of TRP channels inferred by their classification in diverse animal species. Mol Phylogenet Evol 84:145–157. (PMID: 24981559)
Duan J et al (2018) Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci 115(35):E8201–E8210. (PMID: 301081486126765)
Huang Y et al (2019) Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8:e50175. (PMID: 315130126759353)
Winkler PA et al (2017) Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552(7684):200–204. (PMID: 29211723)
Huang Y et al (2018) Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 562(7725):145–149. (PMID: 30250252)
Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223:1143–1176. (PMID: 249619844527175)
Ryazanova LV et al (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109. (PMID: 21045827)
Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127(4):421–434. (PMID: 165338982151514)
Chokshi R, Matsushita M, Kozak JA (2012) Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol 302(7):C1004–C1011. (PMID: 223010563330740)
Nadler MJ et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595. (PMID: 11385574)
Ogata K et al (2017) The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci Rep 7(1):18099. (PMID: 292738145741708)
Rios FJ et al (2020) Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res 116(3):721–735. (PMID: 31250885)
Inoue H et al (2021) The zinc-binding motif of TRPM7 acts as an oxidative stress sensor to regulate its channel activity. J Gen Physiol 153(6):e202012708. (PMID: 339991188129778)
Chen H-C et al (2012) A key role for Mg2+ in TRPM7’s control of ROS levels during cell stress. Biochem J 445(3):441–448. (PMID: 22587440)
Hashizume O et al (2020) Excessive Mg(2+) impairs intestinal homeostasis by enhanced production of adenosine triphosphate and reactive oxygen species. Antioxid Redox Signal 33(1):20–34. (PMID: 32148064)
Tamura M, Kanno M, Kai T (2001) Destabilization of neutrophil NADPH oxidase by ATP and other trinucleotides and its prevention by Mg2+. Biochim et Biophys Acta (BBA) 1510(1–2):270–277.
Inoue K, Branigan D, Xiong Z-G (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285(10):7430–7439. (PMID: 200481542844191)
Aarts M et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7):863–877. (PMID: 14697204)
Marchi S et al (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72. (PMID: 28515000)
Thebault S et al (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20(1):78–85. (PMID: 190738272615736)
Nair AV et al (2012) Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci USA 109(28):11324–11329. (PMID: 227337503396482)
Goytain A, Quamme GA (2005) Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genom 6:48.
Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci 106(37):15750–15755. (PMID: 197174682732712)
Blommaert E et al (2019) Mutations in MAGT1 lead to a glycosylation disorder with a variable phenotype. Proc Natl Acad Sci 116(20):9865–9870. (PMID: 310366656525510)
Kunji ERS et al (2020) The SLC25 carrier family: important transport proteins in mitochondrial physiology and pathology. Physiology 35(5):302–327. (PMID: 32783608)
Cassidy SB et al (2012) Prader-Willi syndrome. Genet Med 14(1):10–26. (PMID: 22237428)
Goytain A et al (2007) NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem 282(11):8060–8068. (PMID: 17166836)
معلومات مُعتمدة: NWO Veni 016.186.012 Nederlandse Organisatie voor Wetenschappelijk Onderzoek; EJPRD2019-40 European Joint Programme on Rare Diseases
فهرسة مساهمة: Keywords: CNNM; Channel; Magnesium; SLC41; TRPM; Transporter
المشرفين على المادة: 0 (Cations, Divalent)
0 (Membrane Transport Proteins)
EC 2.7.- (Phosphotransferases)
I38ZP9992A (Magnesium)
تواريخ الأحداث: Date Created: 20220712 Date Completed: 20220714 Latest Revision: 20220822
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9276622
DOI: 10.1007/s00018-022-04442-8
PMID: 35819535
قاعدة البيانات: MEDLINE
الوصف
تدمد:1420-9071
DOI:10.1007/s00018-022-04442-8