دورية أكاديمية

Investigating Efficacy of Three DNA-Aptamers in Targeted Plasmid Delivery to Human Prostate Cancer Cell Lines.

التفاصيل البيبلوغرافية
العنوان: Investigating Efficacy of Three DNA-Aptamers in Targeted Plasmid Delivery to Human Prostate Cancer Cell Lines.
المؤلفون: Askarian S; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775-1159, Mashhad, Iran.; Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran., Nasab NK; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775-1159, Mashhad, Iran., Aghaee-Bakhtiari SH; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775-1159, Mashhad, Iran., Abadi MHJN; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775-1159, Mashhad, Iran., Oskuee RK; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775-1159, Mashhad, Iran. Oskueekr@mums.ac.ir.; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Oskueekr@mums.ac.ir.
المصدر: Molecular biotechnology [Mol Biotechnol] 2023 Jan; Vol. 65 (1), pp. 97-107. Date of Electronic Publication: 2022 Jul 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مواضيع طبية MeSH: DNA*/genetics , Prostatic Neoplasms*/genetics, Humans ; Male ; Cell Line ; Plasmids/genetics ; Transfection
مستخلص: Selection of targeted and efficient carriers to deliver drugs and genes to cells and tissues is still a major challenge and to overcome this obstacle, aptamers conjugated to nanoparticles have been broadly examined. To assess whether polycation of aptamers can improve plasmid delivery efficacy, we investigated the effect of three DNA-aptamers (AS1411, WY-5a, and Sgs-8) conjugated to branched polyethylenimine (b-PEI; MW ∼25 kDa) with different combinations of gene (plasmid) for delivery to prostate cancer cell lines (DU145 and PC3). According to transfection assessments, the dual conjugation of aptamers (AS:WY) with b-PEI produced the best results and increased the efficiency of plasmid delivery to up to three folds compared to unmodified PEI. Surprisingly, triple aptamer arrangement not only reduced transfection ability but also showed cytotoxicity. While our results demonstrated potential synergistic effects of AS1411 and WY-5a aptamers for gene delivery, it is important to note that the present evidence relies on the aptamer and cell types.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Khazaei, Z., Sohrabivafa, M., Momenabadi, V., Moayed, L., & Goodarzi, E. (2019). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index. Advances in Human Biology, 9, 245–250.
Mattia, G., Puglisi, R., Ascione, B., Malorni, W., Carè, A., & Matarrese, P. (2018). Cell death-based treatments of melanoma:Conventional treatments and new therapeutic strategies. Cell Death & Disease, 9, 112–112.
Alavi, S. J., Gholami, L., Askarian, S., Darroudi, M., Massoudi, A., Rezaee, M., & Oskuee, R. K. (2017). Hyperbranched–dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly (propyleneimine) dendrimers: Synthesis, characterization, and evaluation of transfection efficiency. Journal of Nanoparticle Research, 19, 49.
Glinka, E. M. (2012). Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy. Plasmid, 68, 69–85.
Wang, W., Li, W., Ma, N., & Steinhoff, G. (2013). Non-viral gene delivery methods. Current Pharmaceutical Biotechnology, 14, 46–60.
Hashemi, M., Tabatabai, S. M., Parhiz, H., Milanizadeh, S., Farzad, S. A., Abnous, K., & Ramezani, M. (2016). Gene delivery efficiency and cytotoxicity of heterocyclic amine-modified PAMAM and PPI dendrimers. Materials Science and Engineering C, 61, 791–800.
Ebrahimian, M., Taghavi, S., Mokhtarzadeh, A., Ramezani, M., & Hashemi, M. (2017). Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Applied Biochemistry and Biotechnology, 183, 126–136.
Askarian, S., Abnous, K., Darroudi, M., Oskuee, R. K., & Ramezani, M. (2016). Gene delivery to neuroblastoma cells by poly (l-lysine)-grafted low molecular weight polyethylenimine copolymers. Biologicals, 44, 212–218.
Cho, T. J., Gorham, J. M., Pettibone, J. M., Liu, J., Tan, J., & Hackley, V. A. (2019). Parallel multi-parameter study of PEI-functionalized gold nanoparticle synthesis for bio-medical applications: Part 1—a critical assessment of methodology, properties, and stability. Journal of Nanoparticle Research, 21, 188.
Kumar, K., Vulugundam, G., Jaiswal, P. K., Shyamlal, B. R. K., & Chaudhary, S. (2017). Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles. Bioorganic & Medicinal Chemistry Letters, 27, 4288–4293.
Uğurlu, Ö., Barlas, F. B., Evran, S., & Timur, S. (2020). The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid, 110, 102513.
Chen, J., Wang, K., Wu, J., Tian, H., & Chen, X. (2018). Polycations for gene delivery: Dilemmas and solutions. Bioconjugate Chemistry, 30, 338–349.
Abnous, K., Danesh, N. M., Ramezani, M., Lavaee, P., Jalalian, S. H., Yazdian-Robati, R., Emrani, A. S., Hassanabad, K. Y., & Taghdisi, S. M. (2017). A novel aptamer-based DNA diamond nanostructure for in vivo targeted delivery of epirubicin to cancer cells. RSC Advances, 7, 15181–15188.
Wyatt, L. C., Moshnikova, A., Crawford, T., Engelman, D. M., Andreev, O. A., & Reshetnyak, Y. K. (2018). Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proceedings of the National Academy of Sciences, 115, E2811–E2818.
Oroojalian, F., Rezayan, A. H., Shier, W. T., Abnous, K., & Ramezani, M. (2017). Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl-polyethylenimine-containing nanoplexes. International Journal of Pharmaceutics, 523, 102–120.
Noh, Y., Kim, M.-J., Mun, H., Jo, E.-J., Lee, H., & Kim, M.-G. (2019). Aptamer-based selective KB cell killing by the photothermal effect of gold nanorods. J Nanoparticle Res, 21, 112.
Zhang, W.-Y., Chen, H.-L., & Chen, Q.-C. (2019). In vitro selection of aptamer S1 against MCF-7 human breast cancer cells. Bioorganic & Medicinal Chemistry Letters, 29, 2393–2397.
Ameri, M., Eskandari, S., & Nezafat, N. (2021). An overview of aptamer: The prominent applications and different computational tools for its design. Current Pharmaceutical Biotechnology, 22, 1273–1286.
Wang, T., Chen, C., Larcher, L., Barrero, R. A., & Veedu, R. N. (2018). Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnology Advances, 37, 28–50.
Ding, F., Gao, Y., & He, X. (2017). Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorganic & Medicinal Chemistry Letters, 27, 4256–4269.
Miranda, A., Santos, T., Carvalho, J., Alexandre, D., Jardim, A., Caneira, C. F., Vaz, V., Pereira, B., Godinho, R., & Brito, D. (2021). Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta, 226, 122037.
Sylvester, P. W. (2011). Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. In Drug design and discovery (pp. 157–168). Humana Press.
Zarei, H., Kazemi Oskuee, R., Hanafi-Bojd, M. Y., Gholami, L., Ansari, L., & Malaekeh-Nikouei, B. (2019). Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharmaceutical Development and Technology, 24, 127–132.
Wang, Y., Deng, W., Li, N., Neri, S., Sharma, A., Jiang, W., & Lin, S. H. (2018). Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions. Frontiers in Pharmacology, 9, 185.
Li, L., Xu, S., Yan, H., Li, X., Yazd, H. S., Li, X., Huang, T., Cui, C., Jiang, J., & Tan, W. (2021). Nucleic acid aptamers for molecular diagnostics and therapeutics: Advances and perspectives. Angewandte Chemie International Edition, 60, 2221–2231.
Ng, E. W., Shima, D. T., Calias, P., Cunningham, E. T., Guyer, D. R., & Adamis, A. P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery, 5, 123–132.
Baneshi, M., Dadfarnia, S., Shabani, A. M. H., Sabbagh, S. K., Haghgoo, S., & Bardania, H. (2019). A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. International Journal of Pharmaceutics, 564, 145–152.
Walia, S., Chandrasekaran, A. R., Chakraborty, B., & Bhatia, D. (2021). Aptamer-programmed DNA nanodevices for advanced, targeted cancer theranostics. ACS Applied Bio Materials, 4, 5392–5404.
Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D., & Trent, J. O. (2009). Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Experimental and Molecular Pathology, 86, 151–164.
Abnous, K., Danesh, N. M., Ramezani, M., Yazdian-Robati, R., Alibolandi, M., & Taghdisi, S. M. (2017). A novel chemotherapy drug-free delivery system composed of three therapeutic aptamers for the treatment of prostate and breast cancers in vitro and in vivo. Nanomedicine: Nanotechnology Biology and Medicine, 13, 1933–1940.
Santos, T., Pereira, P., Campello, M. P. C., Paulo, A., Queiroz, J. A., Cabrita, E., & Cruz, C. (2019). RNA G-quadruplex as supramolecular carrier for cancer-selective delivery. European Journal of Pharmaceutics and Biopharmaceutics, 142, 473–479.
Lewis, D., Haines, C., & Ross, D. (2011). Protein tyrosine kinase 7: A novel surface marker for human recent thymic emigrants with potential clinical utility. Journal of Perinatology, 31, S72.
Wang, Y., Luo, Y., Bing, T., Chen, Z., Lu, M., Zhang, N., Shangguan, D., & Gao, X. (2014). DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS ONE, 9, e100243.
Bing, T., Wang, J., Shen, L., Liu, X., & Shangguan, D. (2020). Prion protein targeted by a prostate cancer cell binding aptamer, a potential tumor marker? ACS Applied Bio Materials, 3, 2658–2665.
Lee, J., Oh, J., Lee, E.-S., Kim, Y.-P., & Lee, M. (2019). Conjugation of prostate cancer-specific aptamers to polyethylene glycol-grafted polyethylenimine for enhanced gene delivery to prostate cancer cells. Journal of Industrial and Engineering Chemistry, 73, 182–191.
Kaighn, M., Narayan, K. S., Ohnuki, Y., Lechner, J. F., & Jones, L. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investigative Urology, 17, 16–23.
Mickey, D. D., Stone, K. R., Wunderli, H., Mickey, G. H., Vollmer, R. T., & Paulson, D. F. (1977). Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Research, 37, 4049–4058.
Lima, A. R., Araújo, A. M., Pinto, J., Jerónimo, C., Henrique, R., Bastos, M. D. L., Carvalho, M., & Guedes de Pinho, P. (2018). Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Scientific Reports, 8, 1–12.
Ayatollahi, S., Salmasi, Z., Hashemi, M., Askarian, S., Oskuee, R. K., Abnous, K., & Ramezani, M. (2017). Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. International Journal of Biochemistry & Cell Biology, 92, 210–217.
Stoltenburg, R., Reinemann, C., & Strehlitz, B. (2005). FluMag-SELEX as an advantageous method for DNA aptamer selection. Analytical and Bioanalytical Chemistry, 383, 83–91.
Askarian, S., Abnous, K., Taghavi, S., Oskuee, R. K., & Ramezani, M. (2015). Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids and Surfaces. B Biointerfaces, 136, 355–364.
Salatin, S., Maleki Dizaj, S., & Yari Khosroushahi, A. (2015). Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biology International, 39, 881–890.
González-Domínguez, I., Grimaldi, N., Cervera, L., Ventosa, N., & Gòdia, F. (2019). Impact of physicochemical properties of DNA/PEI complexes on transient transfection of mammalian cells. New Biotechnology, 49, 88–97.
Kim, J. A., Åberg, C., Salvati, A., & Dawson, K. A. (2012). Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 7, 62.
Oskuee, R. K., Dabbaghi, M., Gholami, L., Taheri-Bojd, S., Balali-Mood, M., Mousavi, S. H., & Malaekeh-Nikouei, B. (2018). Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sciences, 197, 101–108.
Powell, D., Chandra, S., Dodson, K., Shaheen, F., Wiltz, K., Ireland, S., Syed, M., Dash, S., Wiese, T., Mandal, T., et al. (2017). Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 114, 108–118.
Taghavi, S., Ramezani, M., Alibolandi, M., Abnous, K., & Taghdisi, S. M. (2017). Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Letters, 400, 1–8.
Wilkosz, N., Jamróz, D., Kopec, W., Nakai, K., Yusa, S.-I., Wytrwal-Sarna, M., Bednar, J., Nowakowska, M., & Kepczynski, M. (2017). Effect of polycation structure on interaction with lipid membranes. The Journal of Physical Chemistry B, 121, 7318–7326.
Kennedy, D. C., Gies, V., Jezierski, A., & Yang, L. (2019). Changes in the physical properties of silver nanoparticles in cell culture media mediate cellular toxicity and uptake. Journal of Nanoparticle Research, 21, 132.
Firlej, V., Soyeux, P., Nourieh, M., Huet, E., Semprez, F., Allory, Y., Londono-Vallejo, A., de la Taille, A., Vacherot, F., & Destouches, D. (2022). Overexpression of nucleolin and associated genes in prostate cancer. International Journal of Molecular Sciences, 23, 4491.
Zhang, H., Wang, A., Qi, S., Cheng, S., Yao, B., & Xu, Y. (2014). Protein tyrosine kinase 7 (PTK7) as a predictor of lymph node metastases and a novel prognostic biomarker in patients with prostate cancer. International Journal of Molecular Sciences, 15, 11665–11677.
Noaparast, Z., Hosseinimehr, S. J., Piramoon, M., & Abedi, S. M. (2015). Tumor targeting with a 99mTc-labeled AS1411 aptamer in prostate tumor cells. Journal of Drug Targeting, 23, 497–505.
Huang, Y., Liu, X., Zhang, L., Hu, K., Zhao, S., Fang, B., Chen, Z.-F., & Liang, H. (2015). Nicking enzyme and graphene oxide-based dual signal amplification for ultrasensitive aptamer-based fluorescence polarization assays. Biosensors & Bioelectronics, 63, 178–184.
Chen, F., Liu, Y., Liao, R., Gong, H., Chen, C., Chen, X., & Cai, C. (2017). Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA. Analytica Chimica Acta, 985, 141–147.
Kafil, V., & Omidi, Y. (2011). Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts: BI, 1, 23.
Kaur, H., Bruno, J. G., Kumar, A., & Sharma, T. K. (2018). Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 8, 4016.
Shahidi-Hamedani, N., Shier, W. T., Moghadam Ariaee, F., Abnous, K., & Ramezani, M. (2013). Targeted gene delivery with noncovalent electrostatic conjugates of sgc-8c aptamer and polyethylenimine. The Journal of Gene Medicine, 15, 261–269.
معلومات مُعتمدة: Grant No: 951396 Mashhad University of Medical Sciences
فهرسة مساهمة: Keywords: Aptamer; Gene delivery; Non-viral vector; Polyethylenimine; Prostate cancer
المشرفين على المادة: 9007-49-2 (DNA)
تواريخ الأحداث: Date Created: 20220714 Date Completed: 20230110 Latest Revision: 20230111
رمز التحديث: 20240628
DOI: 10.1007/s12033-022-00528-7
PMID: 35834121
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-022-00528-7