دورية أكاديمية

Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19.

التفاصيل البيبلوغرافية
العنوان: Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19.
المؤلفون: Trugilho MRO; Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. monique.trugilho@fiocruz.br.; Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. monique.trugilho@fiocruz.br., Azevedo-Quintanilha IG; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Gesto JSM; Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Moraes ECS; Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Mandacaru SC; Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Campos MM; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Oliveira DM; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Dias SSG; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Bastos VA; Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Santos MDM; Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil., Carvalho PC; Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil., Valente RH; Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Hottz ED; Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil., Bozza FA; National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, and D'Or Institute for Research and Education, Rio de Janeiro, Brazil., Souza TML; Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.; National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Rio de Janeiro, Brazil., Perales J; Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil., Bozza PT; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. pbozza@ioc.fiocruz.br.
المصدر: Cell death discovery [Cell Death Discov] 2022 Jul 16; Vol. 8 (1), pp. 324. Date of Electronic Publication: 2022 Jul 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 101665035 Publication Model: Electronic Cited Medium: Print ISSN: 2058-7716 (Print) Linking ISSN: 20587716 NLM ISO Abbreviation: Cell Death Discov Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [New York, NY] : Nature Publishing Group, [2015]-
مستخلص: Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
(© 2022. The Author(s).)
References: COVID-19 Map. Johns Hopkins Coronavirus Resource Center. 2021. https://coronavirus.jhu.edu/map.html . Accessed 13 Oct 2021.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–9. (PMID: 32031570704288110.1001/jama.2020.1585)
de Lucena TMC, da Silva Santos AF, de Lima BR, de Albuquerque Borborema ME, de Azevêdo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020;14:597–600. (PMID: 32417709721514310.1016/j.dsx.2020.05.025)
Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136:489–500. (PMID: 3249271210.1182/blood.2020006520)
Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, et al. Platelet activation and platelet–monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136:1330–41. (PMID: 3267842810.1182/blood.2020007252)
Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben C, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136:1317–29. (PMID: 3257371110.1182/blood.2020007214)
Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75:2950–73. (PMID: 32311448716488110.1016/j.jacc.2020.04.031)
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122:337–51. (PMID: 29348254577730010.1161/CIRCRESAHA.117.310795)
Mesquita EC, Hottz ED, Amancio RT, Carneiro AB, Palhinha L, Coelho LE, et al. Persistent platelet activation and apoptosis in virologically suppressed HIV-infected individuals. Sci Rep. 2018;8:14999. (PMID: 30301959617834510.1038/s41598-018-33403-0)
Koupenova M, Corkrey HA, Vitseva O, Manni G, Pang CJ, Clancy L, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10:1780. (PMID: 30992428646790510.1038/s41467-019-09607-x)
Scudiero F, Valenti R, Marcucci R, Sanna GD, Gori AM, Migliorini A, et al. Platelet reactivity in hepatitis C virus-infected patients on dual antiplatelet therapy for acute coronary syndrome. J Am Heart Assoc. 2020;9:e016441. (PMID: 32885738772699610.1161/JAHA.120.016441)
Trugilho MR, de O, Hottz ED, Brunoro GVF, Teixeira-Ferreira A, Carvalho PC, et al. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathog. 2017;13:e1006385. (PMID: 28542641545362210.1371/journal.ppat.1006385)
Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. J Immunol Balt Md 1950. 2015;194:5579–87.
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, et al. Innate immune receptors in platelets and platelet–leukocyte interactions. J Leukoc Biol. 2020;108:1157–82. (PMID: 3277924310.1002/JLB.4MR0620-701R)
Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114:449–58. (PMID: 2629351410.1160/TH14-12-1067)
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9. (PMID: 1738464810.1038/nm1565)
Hottz ED, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Bozza FA, et al. Platelet–leukocyte interactions in the pathogenesis of viral infections. Platelets. 2022;33:200–7. (PMID: 3426032810.1080/09537104.2021.1952179)
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13:34–45. (PMID: 2322250210.1038/nri3345)
Moraes ECdosS, Martins-Gonçalves R, Silva LdaR, Mandacaru SC, et al. Proteomic profile of procoagulant extracellular vesicles reflects complement system activation and platelet hyperreactivity of patients with severe COVID-19. Front Cell Infect Microbiol. 2022;1–17. https://doi.org/10.3389/fcimb.2022.926352 .
Koupenova M, Corkrey HA, Vitseva O, Tanriverdi K, Somasundaran M, Liu P, et al. SARS-CoV-2 initiates programmed cell death in platelets. Circ Res. 2021;129:631–46. (PMID: 34293929840990310.1161/CIRCRESAHA.121.319117)
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32. (PMID: 1554638310.1111/j.0105-2896.2004.00204.x)
Stertz S, Hale BG. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol. 2021;29:973–82. (PMID: 33757684798010910.1016/j.tim.2021.03.001)
Das A, Dinh PX, Pattnaik AK. Trim21 regulates Nmi-IFI35 complex-mediated inhibition of innate antiviral response. Virology. 2015;485:383–92. (PMID: 2634246410.1016/j.virol.2015.08.013)
Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol. 2013;13:46–57. (PMID: 2323796410.1038/nri3344)
Campbell RA, Schwertz H, Hottz ED, Rowley JW, Manne BK, Washington AV, et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood. 2019;133:2013–26. (PMID: 30723081650954610.1182/blood-2018-09-873984)
Hachim MY, Al Heialy S, Hachim IY, Halwani R, Senok AC, Maghazachi AA, et al. Interferon-induced transmembrane protein (IFITM3) is upregulated explicitly in SARS-CoV-2 infected lung epithelial cells. Front Immunol. 2020;11:1372. (PMID: 32595654730188610.3389/fimmu.2020.01372)
Gómez J, Albaiceta GM, Cuesta-Llavona E, García-Clemente M, López-Larrea C, Amado-Rodríguez L, et al. The Interferon-induced transmembrane protein 3 gene (IFITM3) rs12252 C variant is associated with COVID-19. Cytokine. 2021;137:155354. (PMID: 3311347410.1016/j.cyto.2020.155354)
Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir Res. 2018;150:123–9. (PMID: 2925886210.1016/j.antiviral.2017.12.010)
Quirino-Teixeira AC, Rozini SV, Barbosa-Lima G, Coelho DR, Carneiro PH, Mohana-Borges R, et al. Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv. 2020;4:2018–31. (PMID: 32396616721843110.1182/bloodadvances.2019001169)
Maugeri N, De Lorenzo R, Clementi N, Antonia Diotti R, Criscuolo E, Godino C, et al. Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19. J Thromb Haemost n/a. https://doi.org/10.1111/jth.15575 .
Fenizia C, Galbiati S, Vanetti C, Vago R, Clerici M, Tacchetti C, et al. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells. 2021;10:1434. (PMID: 34201214822651310.3390/cells10061434)
Fintelman-Rodrigues N, Silva APD da, Santos MC dos, Saraiva FB, Ferreira MA, Gesto J, et al. Genetic evidence and host immune response in persons reinfected with SARS-CoV-2, Brazil. Emerg Infect Dis J— CDC. 2021;27. https://doi.org/10.3201/eid2705.204912 .
Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595:107–13. (PMID: 33915569891950510.1038/s41586-021-03570-8)
Middleton EA, Rowley JW, Campbell RA, Grissom CK, Brown SM, Beesley SJ, et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood 2019;134:911–23. https://doi.org/10.1182/blood.2019000067 .
Comer SP, Cullivan S, Szklanna PB, Weiss L, Cullen S, Kelliher S, et al. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol. 2021;19:e3001109. (PMID: 33596198792038310.1371/journal.pbio.3001109)
Taus F, Salvagno G, Canè S, Fava C, Mazzaferri F, Carrara E, et al. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler Thromb Vasc Biol. 2020;40:2975–89. (PMID: 33052054768279110.1161/ATVBAHA.120.315175)
Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020;127:1404–18. (PMID: 764118810.1161/CIRCRESAHA.120.317703)
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13:120. (PMID: 32887634747164110.1186/s13045-020-00954-7)
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020;27:3209–25.
Kuriakose T, Kanneganti T-D. Pyroptosis in antiviral immunity. Springer: Berlin, Heidelberg; Curr Top Microbiol Immunol. 2019; pp. 1–19.
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:1–21. (PMID: 333844077775436)
Hottz ED, Martins-Gonçalves R, Palhinha L, Azevedo-Quintanilha IG, de Campos MM, Sacramento CQ, et al. Platelet–monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Adv 2022;bloodadvances.2021006680.
Aid M, Busman-Sahay K, Vidal SJ, Maliga Z, Bondoc S, Starke C, et al. Vascular disease and thrombosis in SARS-CoV-2-infected Rhesus Macaques. Cell. 2020;183:1354–1366. e13. (PMID: 33065030754618110.1016/j.cell.2020.10.005)
Perng Y-C, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018;16:423–39. (PMID: 29769653709711710.1038/s41579-018-0020-5)
Cantwell AM, Singh H, Platt M, Yu Y, Lin YH, Ikeno Y, et al. Kinetic multi-omic analysis of responses to SARS-CoV-2 infection in a model of severe COVID-19. J Virol 2021;95:e01010–21. https://doi.org/10.1128/JVI.01010-21 .
Arya RP, Lahon A, Patel AK. Dengue virus induces interferon-β by activating RNA sensing pathways in megakaryocytes. Immunol Lett. 2021;236:31–36. (PMID: 3411147610.1016/j.imlet.2021.06.001)
John SP, Chin CR, Perreira JM, Feeley EM, Aker AM, Savidis G, et al. The CD225 domain of IFITM3 Is required for both IFITM protein association and inhibition of Influenza A virus and dengue virus replication. J Virol. 2013;87:7837–52. (PMID: 23658454370019510.1128/JVI.00481-13)
Reddy K, Sinha P, O’Kane CM, Gordon AC, Calfee CS, McAuley DF. Subphenotypes in critical care: translation into clinical practice. Lancet Respir Med. 2020;8:631–43. (PMID: 3252619010.1016/S2213-2600(20)30124-7)
Vladimirov SN, Ivanov AV, Karpova GG, Musolyamov AK, Egorov TA, Thiede B, et al. Characterization of the human small-ribosomal-subunit proteins by N-terminal and internal sequencing, and mass spectrometry. Eur J Biochem. 1996;239:144–9. (PMID: 870669910.1111/j.1432-1033.1996.0144u.x)
Nakagawa K, Lokugamage KG, Makino S. Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res. 2016;96:165–92. (PMID: 27712623538824210.1016/bs.aivir.2016.08.001)
Simon AY, Sutherland MR, Pryzdial ELG. Dengue virus binding and replication by platelets. Blood. 2015;126:378–85. (PMID: 25943787482614510.1182/blood-2014-09-598029)
Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020;183:1325–1339. e21. (PMID: 33080218754388610.1016/j.cell.2020.10.004)
Shen S, Zhang J, Fang Y, Lu S, Wu J, Zheng X, et al. SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol. 2021;14:72. (PMID: 33926500808248510.1186/s13045-021-01082-6)
Zhu A, Real F, Capron C, Rosenberg AR, Silvin A, Dunsmore G, et al. Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci. 2022;79:365. (PMID: 35708858920126910.1007/s00018-022-04318-x)
Bury L, Camilloni B, Castronari R, Piselli E, Malvestiti M, Borghi M, et al. Search for SARS-CoV-2 RNA in platelets from COVID-19 patients. Platelets. 2021;32:284–7. (PMID: 3334910810.1080/09537104.2020.1859104)
Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122:379–91. (PMID: 16096058440199310.1016/j.cell.2005.06.015)
Rondina MT, Voora D, Simon LM, Schwertz H, Harper JF, Lee O, et al. Longitudinal RNA-Seq analysis of the repeatability of gene expression and splicing in human platelets identifies a platelet SELP splice QTL. Circ Res. 2020;126:501–16. (PMID: 3185240110.1161/CIRCRESAHA.119.315215)
Rowley JW, Weyrich AS. Coordinate expression of transcripts and proteins in platelets. Blood. 2013;121:5255–6. (PMID: 23813941369536810.1182/blood-2013-03-487991)
Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118:e101–e111. (PMID: 21596849319327410.1182/blood-2011-03-339705)
Kar M, Singla M, Chandele A, Kabra SK, Lodha R, Medigeshi GR. Dengue virus entry and replication does not lead to productive infection in platelets. Open Forum Infect Dis. 2017;4:ofx051. (PMID: 28491890542008110.1093/ofid/ofx051)
Zheng B, Yuan M, Ma Q, Wang S, Tan Y, Xu Y, et al. Landscape of SARS-CoV-2 spike protein-interacting cells in human tissues. Int Immunopharmacol. 2021;95:107567. (PMID: 33756225794579010.1016/j.intimp.2021.107567)
Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5:1–10.
Akhvlediani T, Ali SM, Angus DC, Arabi YM, Ashraf S, Baillie JK, et al. Global outbreak research: harmony not hegemony. Lancet Infect Dis. 2020;20:770–2. (PMID: 10.1016/S1473-3099(20)30440-0)
Carvalho PC, Lima DB, Leprevost FV, Santos MD, Fischer JS, Aquino PF, et al. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. 2015. https://doi.org/10.1038/nprot.2015.133 .
Zahn-Zabal M, Michel P-A, Gateau A, Nikitin F, Schaeffer M, Audot E, et al. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res. 2020;48:D328–D334. (PMID: 31724716)
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. (PMID: 10.1093/nar/gkaa1100)
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. (PMID: 3047624310.1093/nar/gky1131)
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523. (PMID: 30944313644762210.1038/s41467-019-09234-6)
Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. (PMID: 10.1093/nar/gkaa1113)
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. (PMID: 1459765840376910.1101/gr.1239303)
Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 2020;16:e1009127. (PMID: 33326472777332310.1371/journal.ppat.1009127)
Vilsker M, Moosa Y, Nooij S, Fonseca V, Ghysens Y, Dumon K, et al. Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics. 2019;35:871–3. (PMID: 3012479410.1093/bioinformatics/bty695)
Okonechnikov K, Golosova O, Fursov M, the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. (PMID: 2236824810.1093/bioinformatics/bts091)
Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014;2:e644. (PMID: 25392756422663810.7717/peerj.644)
Rose R, Golosova O, Sukhomlinov D, Tiunov A, Prosperi M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics. 2019;35:1963–5. (PMID: 3035880710.1093/bioinformatics/bty901)
Kuznetsov A, Bollin CJ. NCBI Genome Workbench: desktop software for comparative genomics, visualization, and GenBank Data submission. In: Katoh K (ed) Multiple sequence alignment: methods and protocols. New York, NY: Springer US; 2021. pp. 261–95.
Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–D1069. (PMID: 2320388210.1093/nar/gks1262)
تواريخ الأحداث: Date Created: 20220716 Latest Revision: 20221115
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9287722
DOI: 10.1038/s41420-022-01122-1
PMID: 35842415
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-7716
DOI:10.1038/s41420-022-01122-1