دورية أكاديمية

Identification of potential inhibitors, conformational dynamics, and mechanistic insights into mutant Kirsten rat sarcoma virus (G13D) driven cancers.

التفاصيل البيبلوغرافية
العنوان: Identification of potential inhibitors, conformational dynamics, and mechanistic insights into mutant Kirsten rat sarcoma virus (G13D) driven cancers.
المؤلفون: Tayubi IA; Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Saudi Arabia., Kumar S U; Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India., Doss C GP; Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
المصدر: Journal of cellular biochemistry [J Cell Biochem] 2022 Sep; Vol. 123 (9), pp. 1467-1480. Date of Electronic Publication: 2022 Jul 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8205768 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4644 (Electronic) Linking ISSN: 07302312 NLM ISO Abbreviation: J Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004>- : Hoboken, NJ : Wiley-Liss
Original Publication: New York : Liss, c1982-
مواضيع طبية MeSH: Neoplasms* , Tramadol*, Humans ; Kirsten murine sarcoma virus ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Paroxetine ; Prospective Studies ; Proto-Oncogene Proteins p21(ras)
مستخلص: The mutations at the hotspot region of K-Ras result in the progression of cancer types. Our study aimed to explore the small molecule inhibitors against the G13D mutant K-Ras model with anti-cancerous activity from food and drug administration (FDA)-approved drug compounds. We implemented several computational strategies such as pharmacophore-based virtual screening, molecular docking, absorption, distribution, metabolism and excretion features, and molecular simulation to ensure the identified hit compounds have potential efficacy against G13D K-Ras. We found that the FDA-approved compounds, namely, azelastine, dihydrocodeine, paroxetine, and tramadol, are potential candidates to inhibit the action of G13D mutant K-Ras. All four compounds exhibited similar binding patterns of sotorasib, and a structural binding mechanism with significant hydrophobic contacts. The descriptor features from the QikProp of all four compounds are within allowable limits compared to sotorasib drug. Consequently, a molecular simulation result emphasized that the dihydrocodeine and tramadol exhibited less fluctuation, minimal basin, significant h-bonds, and potent inhibition against G13D K-Ras. As a result, the current research identifies prospective K-Ras inhibitors that could be further improved with biochemical analysis for precision medicine against K-Ras-driven cancers.
(© 2022 Wiley Periodicals LLC.)
References: Guerrero S, Casanova I, Farré L, Mazo A, Capellà G, Mangues R. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 2000;60(23):6750-6756.
Johnson CW, Lin Y-J, Reid D, et al. Isoform-specific destabilization of the active site reveals a molecular mechanism of intrinsic activation of KRas G13D. Cell Rep. 2019;28(6):1538-1550.e7.
McFall T, Schomburg NK, Rossman KL, Stites EC. Discernment between candidate mechanisms for KRAS G13D colorectal cancer sensitivity to EGFR inhibitors. Cell Commun Signal. 2020;18(1):179.
Ou S-HI, Jänne PA, Leal TA, et al. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRASG12C solid tumors (KRYSTAL-1). J Clin Oncol. 2022;21:02752.
Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384(25):2371-2381.
Merck Sharp & Dohme LLC. 2022. A Phase 1, Open-Label, Multicenter Study to Assess the Safety and Tolerability of mRNA-5671/V941 as a Monotherapy and in Combination With Pembrolizumab in Participants With KRAS Mutant Advanced or Metastatic Non-Small Cell Lung Cancer, Colorectal Cancer or Pancreatic Adenocarcinoma. Accessed January 9, 2022. https://clinicaltrials.gov/ct2/show/NCT03948763.
Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst. 1998;90(9):675-684.
Tisi R, Spinelli M, Palmioli A, et al. The multi-level mechanism of action of a pan-Ras inhibitor explains its antiproliferative activity on cetuximab-resistant cancer cells. Front Mol Biosci. 2021;8:625979.
Kumar SU, Kumar DT, Doss CGP, Zayed H. Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. J Biomol Struct Dyn. 2020; 40(4):1-16.
Kumar SU, Doss CGP. Residue interaction networks of K-Ras protein with water molecules identifies the potential role of switch II and P-loop. Comput Biol Med. 2021;135:104597.
Vidimar V, Beilhartz GL, Park M, et al. An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proc Natl Acad Sci USA. 2020;117(29):16938-16948.
Kumar SU, Doss CGP. Computational investigation to identify potent inhibitors of the GTPase-Kirsten RAt sarcoma virus (K-Ras) mutants G12C and G12D. Comput Biol Med. 2021b;139:104946.
Bhardwaj VK, Purohit R. A lesson for the maestro of the replication fork: targeting the protein-binding interface of proliferating cell nuclear antigen for anticancer therapy. J Cell Biochem. 2022;123(6):1091-1102.
Singh R, Bhardwaj VK, Das P, Purohit R. Identification of 11β-HSD1 inhibitors through enhanced sampling methods. Chem Commun (Camb). 2022;58(32):5005-5008.
Singh R, Bhardwaj VK, Purohit R. Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochem Funct. 2022. doi:10.1002/cbf.3709.
Bar-Sagi D, Knelson EH, Sequist LV. A bright future for KRAS inhibitors. Nat Cancer. 2020;1(1):25-27.
Goebel L, Müller MP, Goody RS, Rauh D. KRasG12C inhibitors in clinical trials: a short historical perspective. RSC Med Chem. 11, 2020:(7). 760-770.
Janes MR, Zhang J, Li L-S, et al. Targeting KRAS mutant cancers with a covalent G12C-Specific inhibitor. Cell. 2018;172(3):578-589.e17.
Litvak AM, Drilon AE, Rekhtman N, et al. Phase II trial of bortezomib in KRAS G12D mutant lung cancers. J Clin Oncol. 2015;33(suppl 15):e19002.
Lou K, Steri V, Ge AY, et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 2019;12(583):eaaw9450.
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548-551.
Shin Y, Jeong JW, Wurz RP, et al. Discovery of N-(1-Acryloylazetidin-3-yl)−2-(1H-indol-1-yl)acetamides as covalent inhibitors of KRASG12C. ACS Med Chem Lett. 2019;10(9):1302-1308.
Zeng M, Lu J, Li L, et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol. 2017;24(8):1005-1016.e3.
Harder E, Damm W, Maple J, et al. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 2016;12(1):281-296.
Roos K, Wu C, Damm W, et al. OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput. 2019;15(3):1863-1874.
Greenwood JR, Calkins D, Sullivan AP, Shelley JC. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des. 2010;24(6-7):591-604.
Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20(10-11):647-671.
Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011;10(8):579-590.
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-D1082.
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221-234.
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-1749.
Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49(21):6177-6196.
Nada H, Lee K, Gotina L, Pae AN, Elkamhawy A. Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput Biol Med. 2022;142:105217.
Ajay null, Bemis GW, Murcko, MA. Designing libraries with CNS activity. J Med Chem. 1999;42(24):4942-4951.
Luco JM. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci. 1999;39(2):396-404.
Duffy EM, Jorgensen WL. Prediction of properties from simulations:  free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc. 2000;122(12):2878-2888.
Potts RO, Guy RH. A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Pharm Res. 1995;12(11):1628-1633.
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32(11):2359-2368.
Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput. 2010;6(2):459-466.
Sapay N, Tieleman DP. Combination of the CHARMM27 force field with united-atom lipid force fields. J Comput Chem. 2011;32(7):1400-1410.
Parikh NR, Likhacheva A, Pinnix C, et al. Prognostic significance of EGFR and KRAS mutations in NSCLC patients with brain metastases treated with radiosurgery†. J Radiosurg SBRT. 2015;3(3):171-178.
Vassella E, Kashani E, Zens P, et al. Mutational profiles of primary pulmonary adenocarcinoma and paired brain metastases disclose the importance of KRAS mutations. Eur J Cancer. 2021;159:227-236.
QikProp. Schrödinger Release -1; 2022. Schrödinger, LLC.
Maurer T, Garrenton LS, Oh A, et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA. 2012;109(14):5299-5304.
Sun Q, Burke JP, Phan J, et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl. 2012;51(25):6140-6143.
Seeliger D, de Groot BL. Protein thermostability calculations using alchemical free energy simulations. Biophys J. 2010;98(10):2309-2316.
Yu M, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008;42(4):623-628.
David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol. 2014;1084:193-226.
Kumar SU, Sankar S, Kumar DT, et al. Molecular dynamics, residue network analysis, and cross-correlation matrix to characterize the deleterious missense mutations in GALE causing galactosemia III. Cell Biochem Biophys. 2021;79(2):201-219.
Kumar SU, Rajan B, Kumar DT, et al. Comparison of potential inhibitors and targeting fat mass and obesity-associated protein causing diabesity through docking and molecular dynamics strategies. J Cell Biochem. 2021;122(11):1625-1638.
معلومات مُعتمدة: IFPIP: 573-830-1442 King Abdulaziz University
فهرسة مساهمة: Keywords: G13D; K-Ras; anticancer; cancer; inhibitors; metastasis; pharmacophore model
المشرفين على المادة: 39J1LGJ30J (Tramadol)
41VRH5220H (Paroxetine)
EC 3.6.5.2 (Proto-Oncogene Proteins p21(ras))
تواريخ الأحداث: Date Created: 20220717 Date Completed: 20220919 Latest Revision: 20221021
رمز التحديث: 20231215
DOI: 10.1002/jcb.30305
PMID: 35842839
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4644
DOI:10.1002/jcb.30305