دورية أكاديمية

Non-micronized and micronized curcumin do not prevent the behavioral and neurochemical effects induced by acute stress in zebrafish.

التفاصيل البيبلوغرافية
العنوان: Non-micronized and micronized curcumin do not prevent the behavioral and neurochemical effects induced by acute stress in zebrafish.
المؤلفون: Sachett A; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil., Gallas-Lopes M; Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil., Benvenutti R; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil., Marcon M; Departamento de Bioquímica, Farmacologia e Fisiologia, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil., Linazzi AM; Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil., Aguiar GPS; Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil., Herrmann AP; Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil.; Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil., Oliveira JV; Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil.; Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil., Siebel AM; Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC, Brazil., Piato A; Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. angelopiato@ufrgs.br.; Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil. angelopiato@ufrgs.br.
المصدر: Pharmacological reports : PR [Pharmacol Rep] 2022 Aug; Vol. 74 (4), pp. 736-744. Date of Electronic Publication: 2022 Jul 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101234999 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2299-5684 (Electronic) Linking ISSN: 17341140 NLM ISO Abbreviation: Pharmacol Rep Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Cham, Switzerland : Springer International Publishing
Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005-
مواضيع طبية MeSH: Curcumin*/pharmacology , Curcumin*/therapeutic use, Animals ; Antioxidants/pharmacology ; Humans ; Oxidative Stress ; Thiobarbituric Acid Reactive Substances ; Zebrafish
مستخلص: Background: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential.
Methods: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol.
Results: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects.
Conclusion: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.
(© 2022. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.)
References: Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409. (PMID: 19469025424062710.1038/nrn2647)
Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahman MM. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci. 2015;18:1364–75. (PMID: 2640471110.1038/nn.4115)
McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63. (PMID: 26404710493328910.1038/nn.4086)
McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904. (PMID: 1761539110.1152/physrev.00041.2006)
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10:459–66. (PMID: 19339973284412310.1038/nrn2632)
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34. (PMID: 26711676554267810.1038/nri.2015.5)
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in depression: potential mechanisms of action and current evidence-a narrative review. Front Psychiatry. 2020;11: 572533. (PMID: 33329109772860810.3389/fpsyt.2020.572533)
Avery SV. Molecular targets of oxidative stress. Biochem J. 2011;434:201–10. (PMID: 2130974910.1042/BJ20101695)
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol. 2018;49:72–85. (PMID: 29339091596402010.1016/j.yfrne.2018.01.001)
Mandelker L. Introduction to oxidative stress and mitochondrial dysfunction. Vet Clin North Am Small Anim Pract. 2008;38(1–30):v.
Morris G, Walder KR, Berk M, Marx W, Walker AJ, Maes M, et al. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep. 2020;47:5587–620. (PMID: 3256422710.1007/s11033-020-05590-5)
Alsop D, Vijayan MM, American Physiological Society. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol. 2008;294:R711–9. (PMID: 1807750710.1152/ajpregu.00671.2007)
de Abreu MS, Koakoski G, Ferreira D, Oliveira TA, da Rosa JGS, Gusso D, et al. Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS ONE. 2014;9:e103232. (PMID: 25054216410841110.1371/journal.pone.0103232)
Bertelli PR, Mocelin R, Marcon M, Sachett A, Gomez R, Rosa AR, et al. Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2021;111: 110388. (PMID: 3414753410.1016/j.pnpbp.2021.110388)
Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res. 2010;214:332–42. (PMID: 2054096610.1016/j.bbr.2010.06.001)
Dal Santo G, Conterato GMM, Barcellos LJG, Rosemberg DB, Piato AL. Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci Lett. 2014;558:103–8. (PMID: 10.1016/j.neulet.2013.11.011)
Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205:38–44. (PMID: 19540270292290610.1016/j.bbr.2009.06.022)
Fontana BD, Cleal M, Gibbon AJ, McBride SD, Parker MO. The effects of two stressors on working memory and cognitive flexibility in zebrafish (Danio rerio): the protective role of D1/D5 agonist on stress responses. Neuropharmacology. 2021;196: 108681. (PMID: 3417532310.1016/j.neuropharm.2021.108681)
Ghisleni G, Capiotti KM, Da Silva RS, Oses JP, Piato ÂL, Soares V, et al. The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:176–82. (PMID: 2189315410.1016/j.pnpbp.2011.08.016)
Giacomini ACVV, Abreu MS, Giacomini LV, Siebel AM, Zimerman FF, Rambo CL, et al. Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav Brain Res. 2016;296:301–10. (PMID: 2640316110.1016/j.bbr.2015.09.027)
Idalencio R, Kalichak F, Rosa JGS, de Oliveira TA, Koakoski G, Gusso D, et al. Waterborne risperidone decreases stress response in zebrafish. PLoS ONE. 2015;10:e0140800 (Public Library of Science). (PMID: 26473477460878010.1371/journal.pone.0140800)
Mocelin R, Herrmann AP, Marcon M, Rambo CL, Rohden A, Bevilaqua F, et al. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish. Pharmacol Biochem Behav. 2015;139:121–6. (PMID: 2626101910.1016/j.pbb.2015.08.006)
Pancotto L, Mocelin R, Marcon M, Herrmann AP, Piato A. Anxiolytic and anti-stress effects of acute administration of acetyl-L-carnitine in zebrafish. PeerJ. 2018;6:e5309. (PMID: 30083453607479610.7717/peerj.5309)
Piato AL, Rosemberg DB, Capiotti KM, Siebel AM, Herrmann AP, Ghisleni G, et al. Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res. 2011;36:1876–86. (PMID: 2160393510.1007/s11064-011-0509-z)
Reis CG, Mocelin R, Benvenutti R, Marcon M, Sachett A, Herrmann AP, et al. Effects of N-acetylcysteine amide on anxiety and stress behavior in zebrafish. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:591–601. (PMID: 3176857310.1007/s00210-019-01762-8)
da Silva Marques JG, Antunes FTT, da Silva Brum LF, Pedron C, de Oliveira IB, de Barros Falcão Ferraz A, et al. Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav Brain Res. 2021;399:113002. (PMID: 3316103310.1016/j.bbr.2020.113002)
Khodadadegan MA, Azami S, Guest PC, Jamialahmadi T, Sahebkar A. Effects of curcumin on depression and anxiety: a narrative review of the recent clinical data. Adv Exp Med Biol. 2021;1291:283–94. (PMID: 3433169710.1007/978-3-030-56153-6_17)
Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord. 2014;167:368–75. (PMID: 2504662410.1016/j.jad.2014.06.001)
Matias JN, Achete G, Campanari GSDS, Guiguer ÉL, Araújo AC, Buglio DS, et al. A systematic review of the antidepressant effects of curcumin: beyond monoamines theory. Aust N Z J Psychiatry. 2021;55:451–62. (PMID: 3367373910.1177/0004867421998795)
Mohammad Abu-Taweel G, Al-Fifi Z. Protective effects of curcumin towards anxiety and depression-like behaviors induced mercury chloride. Saudi J Biol Sci. 2021;28:125–34. (PMID: 3342428910.1016/j.sjbs.2020.09.011)
Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from curcuma longa by LC–MS/MS. J Chromatogr B. 2007;853:183–9. (PMID: 10.1016/j.jchromb.2007.03.010)
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18. (PMID: 1799946410.1021/mp700113r)
Almeida ER, Lima-Rezende CA, Schneider SE, Garbinato C, Pedroso J, Decui L, et al. Micronized resveratrol shows anticonvulsant properties in pentylenetetrazole-induced seizure model in adult zebrafish. Neurochem Res. 2021;46:241–51. (PMID: 3310862910.1007/s11064-020-03158-0)
Decui L, Garbinato CLL, Schneider SE, Mazon SC, Almeida ER, Aguiar GPS, et al. Micronized resveratrol shows promising effects in a seizure model in zebrafish and signalizes an important advance in epilepsy treatment. Epilepsy Res. 2020;159: 106243. (PMID: 3178649310.1016/j.eplepsyres.2019.106243)
Sachett A, Gallas-Lopes M, Benvenutti R, Marcon M, Aguiar GPS, Herrmann AP, et al. Curcumin micronization by supercritical fluid: In vitro and in vivo biological relevance. Ind Crops Prod. 2022;177: 114501. (PMID: 10.1016/j.indcrop.2021.114501)
du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617–24. (PMID: 10.1111/bph.15193)
Leary S, Underwood W, Anthony R, Cartner S, Grandin T, Greenacre C, et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Schaumburg, Ill: AVMA, 2020. https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf.
Benvenutti R, Gallas-Lopes M, Sachett A, Marcon M, Strogulski NR, Reis CG, et al. How do zebrafish (Danio rerio) respond to MK-801 and amphetamine? Relevance for assessing schizophrenia-related endophenotypes in alternative model organisms. J Neurosci Res. 2021. https://doi.org/10.1002/jnr.24948 . (PMID: 10.1002/jnr.2494834496062)
Sachett A. How to prepare zebrafish brain tissue samples for biochemical assays. 2020 [cited 2021 Aug 4]. Available from: https://www.protocols.io/view/how-to-prepare-zebrafish-brain-tissue-samples-for-bjkdkks6.
Sachett A. Protein quantification protocol optimized for zebrafish brain tissue (Bradford method). 2020 [cited 2021 Aug 4]. Available from: https://www.protocols.io/view/optimized-protein-quantification-bradford-protocol-bjnfkmbn.
Sachett A, Gallas-Lopes M, Conterato GMM, Radharani, Herrmann A, Piato A. Quantification of nonprotein sulfhydryl groups (NPSH) optimized for zebrafish brain tissue [Internet]. protocols.io. 2021 [cited 2021 Oct 11]. Available from: https://www.protocols.io/view/quantification-of-nonprotein-sulfhydryl-groups-nps-bx8tprwn.
Sachett A. Quantification of thiobarbituric acid reactive species (TBARS) optimized for zebrafish brain tissue. 2020 [cited 2021 Aug 4]. Available from: https://www.protocols.io/view/optimized-quantification-of-thiobarbituric-acid-re-bjp8kmrw.
Haider S, Naqvi F, Batool Z, Tabassum S, Sadir S, Liaquat L, et al. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats. Brain Res Bull. 2015;115:1–8. (PMID: 2586975510.1016/j.brainresbull.2015.04.001)
Johnson A, Hamilton TJ. Modafinil decreases anxiety-like behaviour in zebrafish. PeerJ. 2017;5: e2994. (PMID: 28229024531256810.7717/peerj.2994)
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 2012;62:135–43. (PMID: 2184353710.1016/j.neuropharm.2011.07.037)
McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43:2–15. (PMID: 1261462710.1016/S0018-506X(02)00024-7)
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74. (PMID: 19721819272466510.2174/157015909787602823)
Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010;1352:167–75. (PMID: 2063354210.1016/j.brainres.2010.07.007)
Ceremuga TE, Helmrick K, Kufahl Z, Kelley J, Keller B, Philippe F, et al. Investigation of the anxiolytic and antidepressant effects of curcumin, a compound from turmeric (curcuma longa), in the adult male Sprague-Dawley rat. Holist Nurs Pract. 2017;31:193–203. (PMID: 2840687310.1097/HNP.0000000000000208)
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA, American Chemical Society. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60:1620–37. (PMID: 28074653534697010.1021/acs.jmedchem.6b00975)
فهرسة مساهمة: Keywords: Acute restraint stress; Curcumin; Open tank test; Oxidative damage; Zebrafish
المشرفين على المادة: 0 (Antioxidants)
0 (Thiobarbituric Acid Reactive Substances)
IT942ZTH98 (Curcumin)
تواريخ الأحداث: Date Created: 20220719 Date Completed: 20220805 Latest Revision: 20220805
رمز التحديث: 20231215
DOI: 10.1007/s43440-022-00389-6
PMID: 35852770
قاعدة البيانات: MEDLINE
الوصف
تدمد:2299-5684
DOI:10.1007/s43440-022-00389-6