دورية أكاديمية

Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion.

التفاصيل البيبلوغرافية
العنوان: Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion.
المؤلفون: Manesis AC; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210., Yerbulekova A; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210., Shearer J; Department of Chemistry, Trinity University, San Antonio, TX 78212., Shafaat HS; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
المصدر: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2022 Jul 26; Vol. 119 (30), pp. e2123022119. Date of Electronic Publication: 2022 Jul 18.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : National Academy of Sciences
مواضيع طبية MeSH: Aldehyde Oxidoreductases*/chemistry , Azurin*/chemistry , Esters*/chemical synthesis , Multienzyme Complexes*/chemistry , Nickel*/chemistry , Origin of Life* , Sulfur Compounds*/chemical synthesis, Catalysis ; Models, Chemical
مستخلص: The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the Ni I species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.
References: J Biol Chem. 1990 Feb 25;265(6):3124-33. (PMID: 2303444)
Methods Enzymol. 2009;467:601-626. (PMID: 19897109)
Biochemistry. 2010 Sep 7;49(35):7516-23. (PMID: 20669901)
Inorg Chem. 2011 Oct 3;50(19):9290-9. (PMID: 21879709)
J Am Chem Soc. 2017 Aug 2;139(30):10328-10338. (PMID: 28675928)
Dalton Trans. 2009 Jun 14;(22):4359-69. (PMID: 19662314)
Biochemistry. 1996 Aug 6;35(31):10078-88. (PMID: 8756470)
J Am Chem Soc. 2002 Jun 5;124(22):6277-84. (PMID: 12033855)
J Am Chem Soc. 2003 Jan 29;125(4):868-9. (PMID: 12537475)
J Am Chem Soc. 2005 Oct 5;127(39):13500-1. (PMID: 16190705)
J Biol Chem. 1991 Feb 25;266(6):3554-64. (PMID: 1995618)
Org Biomol Chem. 2007 Dec 7;5(23):3814-20. (PMID: 18004461)
Nat Microbiol. 2016 Jul 25;1(9):16116. (PMID: 27562259)
Chem Rev. 2014 Apr 23;114(8):4149-74. (PMID: 24521136)
J Biol Inorg Chem. 2004 Jul;9(5):516-24. (PMID: 15221478)
Nat Chem. 2017 Mar;9(3):257-263. (PMID: 28221360)
Science. 1997 Apr 11;276(5310):245-7. (PMID: 9092471)
Orig Life Evol Biosph. 2011 Oct;41(5):399-412. (PMID: 21728078)
Science. 2002 Oct 18;298(5593):567-72. (PMID: 12386327)
J Biol Chem. 1985 Apr 10;260(7):3970-7. (PMID: 2984190)
J Am Chem Soc. 2021 Feb 3;143(4):2005-2015. (PMID: 33464049)
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11862-6. (PMID: 19584250)
J Biol Chem. 2008 Mar 28;283(13):8384-94. (PMID: 18203715)
J Synchrotron Radiat. 1999 May 1;6(Pt 3):376-8. (PMID: 15263313)
Biochemistry. 2002 Feb 12;41(6):1807-19. (PMID: 11827525)
Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):461-4. (PMID: 8552661)
Inorg Chem. 2015 Aug 17;54(16):7959-67. (PMID: 26234790)
J Am Chem Soc. 2004 Jun 23;126(24):7627-38. (PMID: 15198611)
J Am Chem Soc. 2008 May 14;130(19):6272-80. (PMID: 18422317)
J Am Chem Soc. 2018 Aug 15;140(32):10250-10262. (PMID: 30016865)
J Am Chem Soc. 2008 May 28;130(21):6712-3. (PMID: 18459773)
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13825-30. (PMID: 16166259)
J Am Chem Soc. 2015 Sep 16;137(36):11570-3. (PMID: 26318313)
ACS Catal. 2020 Sep 4;10(17):9741-9746. (PMID: 33495716)
J Am Chem Soc. 2013 Dec 11;135(49):18272-5. (PMID: 24237257)
Biochemistry. 2017 Mar 7;56(9):1248-1260. (PMID: 28186407)
J Am Chem Soc. 2020 Sep 9;142(36):15362-15370. (PMID: 32786751)
Inorg Chem. 2007 Feb 5;46(3):710-9. (PMID: 17257012)
Biochemistry. 1998 Oct 13;37(41):14491-9. (PMID: 9772177)
J Am Chem Soc. 2008 Oct 15;130(41):13510-1. (PMID: 18800791)
J Am Chem Soc. 2003 Nov 19;125(46):13962-3. (PMID: 14611224)
Chem Rev. 2016 Jul 27;116(14):8173-92. (PMID: 27398715)
Structure. 2021 Jan 7;29(1):43-49.e3. (PMID: 32937101)
Biochemistry. 2008 May 20;47(20):5544-55. (PMID: 18442256)
Biochemistry. 1996 Feb 20;35(7):2429-36. (PMID: 8652586)
J Am Chem Soc. 2006 Sep 20;128(37):12331-8. (PMID: 16967985)
Inorg Chem. 2019 Jul 15;58(14):8969-8982. (PMID: 30788970)
J Magn Reson. 2006 Jan;178(1):42-55. (PMID: 16188474)
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14704-14709. (PMID: 27856762)
Science. 2003 Aug 15;301(5635):938-40. (PMID: 12920291)
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1166-E1173. (PMID: 29358391)
J Am Chem Soc. 2016 Feb 17;138(6):1760-3. (PMID: 26840123)
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14331-6. (PMID: 16983091)
Angew Chem Int Ed Engl. 2011 Dec 23;50(52):12621-5. (PMID: 22065604)
Sustain Energy Fuels. 2018 Apr 1;2(4):724-750. (PMID: 31497651)
J Am Chem Soc. 2021 Jan 20;143(2):849-867. (PMID: 33415980)
Biochemistry. 1989 May 30;28(11):4675-80. (PMID: 2569891)
Inorg Chem. 2020 Sep 21;59(18):13416-13426. (PMID: 32871080)
J Am Chem Soc. 2014 Nov 12;136(45):16009-22. (PMID: 25322331)
J Inorg Biochem. 2012 Oct;115:119-26. (PMID: 22658756)
معلومات مُعتمدة: R15 GM141650 United States GM NIGMS NIH HHS; Canada CIHR
فهرسة مساهمة: Keywords: acetyl coenzyme A synthase; activated thioester; bioorganometallic; carbon–carbon coupling; metalloprotein design
المشرفين على المادة: 0 (Esters)
0 (Multienzyme Complexes)
0 (Sulfur Compounds)
12284-43-4 (Azurin)
7OV03QG267 (Nickel)
EC 1.2.- (Aldehyde Oxidoreductases)
EC 1.2.7.4 (carbon monoxide dehydrogenase)
تواريخ الأحداث: Date Created: 20220720 Date Completed: 20220722 Latest Revision: 20230416
رمز التحديث: 20230416
مُعرف محوري في PubMed: PMC9335327
DOI: 10.1073/pnas.2123022119
PMID: 35858422
قاعدة البيانات: MEDLINE
الوصف
تدمد:1091-6490
DOI:10.1073/pnas.2123022119