دورية أكاديمية

Monitoring GAPDH activity and inhibition with cysteine-reactive chemical probes.

التفاصيل البيبلوغرافية
العنوان: Monitoring GAPDH activity and inhibition with cysteine-reactive chemical probes.
المؤلفون: Canarelli SE; Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467 USA eranthie@bc.edu., Swalm BM; Rheos Medicines, Inc Cambridge Massachusetts 02142 USA elarson@rheosrx.com mmorrison57@gmail.com., Larson ET; Rheos Medicines, Inc Cambridge Massachusetts 02142 USA elarson@rheosrx.com mmorrison57@gmail.com., Morrison MJ; Rheos Medicines, Inc Cambridge Massachusetts 02142 USA elarson@rheosrx.com mmorrison57@gmail.com., Weerapana E; Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467 USA eranthie@bc.edu.
المصدر: RSC chemical biology [RSC Chem Biol] 2022 Jun 09; Vol. 3 (7), pp. 972-982. Date of Electronic Publication: 2022 Jun 09 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101768727 Publication Model: eCollection Cited Medium: Internet ISSN: 2633-0679 (Electronic) Linking ISSN: 26330679 NLM ISO Abbreviation: RSC Chem Biol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge : Royal Society of Chemistry, [2020]-
مستخلص: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysis that regulates the Warburg effect in cancer cells. In addition to its role in metabolism, GAPDH is also implicated in diverse cellular processes, including transcription and apoptosis. Dysregulated GAPDH activity is associated with a variety of pathologies, and GAPDH inhibitors have demonstrated therapeutic potential as anticancer and immunomodulatory agents. Given the critical role of GAPDH in pathophysiology, it is important to have access to tools that enable rapid monitoring of GAPDH activity and inhibition within a complex biological system. Here, we report an electrophilic peptide-based probe, SEC1, which covalently modifies the active-site cysteine, C152, of GAPDH to directly report on GAPDH activity within a proteome. We demonstrate the utility of SEC1 to assess changes in GAPDH activity in response to oncogenic transformation, reactive oxygen species (ROS) and small-molecule GAPDH inhibitors, including Koningic acid (KA). We then further evaluated KA, to determine the detailed mechanism of inhibition. Our mechanistic studies confirm that KA is a highly effective irreversible inhibitor of GAPDH, which acts through a NAD + -uncompetitive and G3P-competitive mechanism. Proteome-wide evaluation of the cysteine targets of KA demonstrated high selectivity for the active-site cysteine of GAPDH over other reactive cysteines within the proteome. Lastly, the therapeutic potential of KA was investigated in an autoimmune model, where treatment with KA resulted in decreased cytokine production by Th1 effector cells. Together, these studies describe methods to evaluate GAPDH activity and inhibition within a proteome, and report on the high potency and selectivity of KA as an irreversible inhibitor of GAPDH.
Competing Interests: The authors declare no competing financial interests.
(This journal is © The Royal Society of Chemistry.)
References: Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383. (PMID: 32231263)
J Alzheimers Dis. 2010;20(2):369-93. (PMID: 20164570)
Bioorg Chem. 2020 Mar;96:103620. (PMID: 32028064)
J Cell Biochem. 2005 May 1;95(1):45-52. (PMID: 15770658)
Clin Transl Oncol. 2013 Mar;15(3):167-72. (PMID: 22911551)
Mol Pharm. 2018 Mar 5;15(3):743-749. (PMID: 29172527)
Wiley Interdiscip Rev Syst Biol Med. 2020 Sep;12(5):e1486. (PMID: 32105390)
Nat Protoc. 2007;2(6):1414-25. (PMID: 17545978)
Biochim Biophys Acta. 1999 Jul 13;1432(2):159-84. (PMID: 10407139)
Eur J Med Chem. 2020 Dec 1;207:112740. (PMID: 32898762)
Cell Metab. 2017 Oct 3;26(4):648-659.e8. (PMID: 28918937)
J Cell Biochem. 1997 Aug 1;66(2):133-40. (PMID: 9213215)
J Gen Physiol. 1927 Mar 7;8(6):519-30. (PMID: 19872213)
J Cell Biochem. 2012 Jul;113(7):2193-200. (PMID: 22388977)
Eur J Cancer. 2000 May;36(8):1038-42. (PMID: 10885609)
ACS Chem Biol. 2014 Jan 17;9(1):258-65. (PMID: 24111988)
Sci Signal. 2016 Sep 13;9(445):rs10. (PMID: 27625306)
Nat Cell Biol. 2005 Jul;7(7):665-74. (PMID: 15951807)
ACS Chem Biol. 2018 Nov 16;13(11):3054-3058. (PMID: 30395437)
Methods Biochem Anal. 2005;46:1-265. (PMID: 16350889)
Breast Cancer Res Treat. 2001 Jan;65(2):101-10. (PMID: 11261825)
Nitric Oxide. 2016 Feb 29;53:13-21. (PMID: 26725192)
Pharmaceutics. 2020 May 02;12(5):. (PMID: 32370188)
Cell Signal. 2011 Feb;23(2):317-23. (PMID: 20727968)
J Antibiot (Tokyo). 1985 Jul;38(7):920-5. (PMID: 4030504)
Genomics. 2004 Dec;84(6):1014-20. (PMID: 15533718)
Front Immunol. 2018 Sep 03;9:1973. (PMID: 30233578)
Biochim Biophys Acta. 1991 Apr 8;1077(2):192-6. (PMID: 2015292)
Aging Dis. 2021 Aug 1;12(5):1223-1237. (PMID: 34341704)
J Biol Chem. 2017 Mar 17;292(11):4727-4742. (PMID: 28167533)
Science. 2018 Apr 27;360(6387):449-453. (PMID: 29599194)
Cancer Cell Int. 2020 Aug 28;20:420. (PMID: 32874134)
معلومات مُعتمدة: R35 GM134964 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20220722 Latest Revision: 20221006
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9257626
DOI: 10.1039/d2cb00091a
PMID: 35866162
قاعدة البيانات: MEDLINE
الوصف
تدمد:2633-0679
DOI:10.1039/d2cb00091a