دورية أكاديمية

Proposition of critical thresholds for copper and zinc transfer to solution in soils.

التفاصيل البيبلوغرافية
العنوان: Proposition of critical thresholds for copper and zinc transfer to solution in soils.
المؤلفون: Morais GP; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil., Comin JJ; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil., Lourenzi CR; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil., Tiecher TL; Rio Grande Do Sul Federal Institute, Restinga Campus, Porto Alegre, RS, 91791-508, Brazil., Soares CRFS; Biological Sciences Center, Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil., Loss A; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil., Gatiboni LC; Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA., Bortolini JG; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil., Ferreira GW; Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil. guilhermewferreira@hotmail.com., Dos Santos EMH; Soil and Agricultural Engineering Department, Federal University of Paraná (UFPR), Curitiba, 80035-050, Brazil., Brunetto G; Soil Science Department, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2022 Jul 30; Vol. 194 (9), pp. 623. Date of Electronic Publication: 2022 Jul 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Metals, Heavy*/analysis , Soil Pollutants*/analysis, Clay ; Copper/analysis ; Environmental Monitoring ; Organic Chemicals ; Soil ; Zinc/analysis
مستخلص: Several studies have reported increased copper (Cu) and zinc (Zn) levels in agricultural soils worldwide, mainly due to organic waste and successive leaf fungicide applications in crops. However, the critical transfer thresholds in soils, which can indicate the real risk of environmental contamination and toxicity to plants, remain poorly understood. This study aimed to define the maximum Cu and Zn adsorption capacity (MAC) and threshold (T-Cu and T-Zn) in different soils in Southern Brazil, which present different clay and organic matter (OM) levels. Bw (Oxisol) and A horizon (Inceptisol) samples were used to obtain soils with clay and OM contents ranging from 4 to 70% and from 0.5 to 9.5%, respectively. Cu and Zn adsorption curves were plotted for MAC determination purposes. Based on Cu and Zn MAC values, different concentrations of these elements were applied to the soils for subsequent quantification of available Cu and Zn levels (Mehlich-1 and water). T-Cu in soils with different clay contents ranged from 81 to 595 mg Cu kg -1 , whereas T-Zn, from 195 to 378 mg Zn kg -1 . T-Cu in soils with different OM levels ranged from 97 to 667 mg Cu kg -1 , whereas T-Zn, from 226 to 495 mg Zn kg -1 . T-Cu can be calculated through the equation: T-Cu = 75 × (%CL 0.34 ) × (%OM 0.39 ), whereas T-Zn: T-Zn = 2.7 × (CL) + 126 (by taking into consideration the clay content) and T-Zn = - 9.3 × (%OM) 2  + 92.4 × (%OM) + 66 (by taking into consideration OM content). T-Cu and T-Zn can be used by researchers, inspection bodies, technical assistance institutions, and farmers as safe indicators to monitor the potential for environmental contamination.
(© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174(February), 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068. (PMID: 10.1016/j.ecoenv.2019.02.068)
Babcsányi, I., Chabaux, F., Granet, M., Meite, F., Payraudeau, S., Duplay, J., & Imfeld, G. (2016). Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. Science of the Total Environment, 557–558, 154–162. https://doi.org/10.1016/j.scitotenv.2016.03.037. (PMID: 10.1016/j.scitotenv.2016.03.037)
Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., et al. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307. https://doi.org/10.1016/j.chemosphere.2016.07.104. (PMID: 10.1016/j.chemosphere.2016.07.104)
Brunetto, G., Ferreira, P. A. A., Melo, G. W., Ceretta, C. A., & Moreno, T. (2017). Heavy metals in vineyards and orchard soils. Revista Brasileira de Fruticultura, 39(2), e-263. https://doi.org/10.1590/0100-29452017.
Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., de Moraes, M. P., et al. (2014). Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 60(5), 609–624. https://doi.org/10.1080/03650340.2013.826348. (PMID: 10.1080/03650340.2013.826348)
Brunetto, G., Souza, R. O. S., Piccin, R., Bellinaso, R. J. S., Kaminski, J., Ceretta, C. A., et al. (2019). Effectiveness of a rapid soil incubation method for determining potential acidity of soils in Rio Grande do Sul, Brazil. Ciencia Rural, 49(2), 1–5. https://doi.org/10.1590/0103-8478cr20180350. (PMID: 10.1590/0103-8478cr20180350)
Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20(4), 384–397. https://doi.org/10.1080/15226514.2017.1365340. (PMID: 10.1080/15226514.2017.1365340)
Casagrande, José Carlos., Jordão, Camila Beig, Alleoni, Luís Reynaldo Ferracciú., & Camargo, Otávio Antônio de. (2004). Copper desorption in a soil with variable charge. Scientia Agricola, 61(2), 196–202. https://doi.org/10.1590/S0103-90162004000200012 . (PMID: 10.1590/S0103-90162004000200012)
Casali, C. A., Moterle, D. F., dos Rheinheimer, D., & S., Brunetto, G., Corcini, A. L. M., Kaminski, J., & Melo, G. W. B. de. (2008). Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Revista Brasileira De Ciência Do Solo, 32(4), 1479–1487. https://doi.org/10.1590/s0100-06832008000400012. (PMID: 10.1590/s0100-06832008000400012)
CONAMA - Conselho Nacional do Meio Ambiente. Resolução CONAMA 420/2009. , Pub. L. No. 420 (2009). Brasil. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620.
Cui, H., Li, H., Zhang, S., Yi, Q., Zhou, J., Fang, G., & Zhou, J. (2020). Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere, 242, 125252. https://doi.org/10.1016/j.chemosphere.2019.125252. (PMID: 10.1016/j.chemosphere.2019.125252)
Cui, J., li, Zhao, Y. ping, Li, J. shan, Beiyuan, J. zi, Tsang, D. C. W., Poon, C. sun, et al. (2018). Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 232, 375–384. https://doi.org/10.1016/j.envpol.2017.09.040. (PMID: 10.1016/j.envpol.2017.09.040)
De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., et al. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156. https://doi.org/10.1016/j.chemosphere.2018.10.134. (PMID: 10.1016/j.chemosphere.2018.10.134)
Diagboya, P. N., Olu-Owolabi, B. I., & Adebowale, K. O. (2015). Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research, 22(13), 10331–10339. https://doi.org/10.1007/s11356-015-4241-0. (PMID: 10.1007/s11356-015-4241-0)
Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160–173. https://doi.org/10.1016/j.cnsns.2015.09.009. (PMID: 10.1016/j.cnsns.2015.09.009)
Elbana, T. A., Magdi Selim, H., Akrami, N., Newman, A., Shaheen, S. M., & Rinklebe, J. (2018). Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma, 324(December 2017), 80–88. https://doi.org/10.1016/j.geoderma.2018.03.019.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (1997). Manual de métodos de análise de solo, (2nd ed., p. 212). Rio de Janeiro: Embrapa-CNPS.
Fernández-Calviño, D., Soler-Rovira, P., Polo, A., Arias-Estévez, M., & Plaza, C. (2010). Influence of humified organic matter on copper behavior in acid polluted soils. Environmental Pollution, 158(12), 3634–3641. https://doi.org/10.1016/j.envpol.2010.08.005. (PMID: 10.1016/j.envpol.2010.08.005)
Fernández-Calviño, D., Pateiro-Moure, M., Nóvoa-Muñoz, J. C., Garrido-Rodríguez, B., & Arias-Estévez, M. (2012). Zinc distribution and acid-base mobilisation in vineyard soils and sediments. Science of the Total Environment, 414, 470–479. https://doi.org/10.1016/j.scitotenv.2011.10.033. (PMID: 10.1016/j.scitotenv.2011.10.033)
Gatiboni, L. C., Brunetto, G., Kaminski, J., Dos Santos Rheinheimer, D., Ceretta, C. A., & Basso, C. J. (2008). Soil phosphorus forms after successive pig slurry application in a native pasture. Revista Brasileira De Ciencia Do Solo, 32(4), 1753–1761. https://doi.org/10.1590/s0100-06832008000400040. (PMID: 10.1590/s0100-06832008000400040)
Gatiboni, L. C., Smyth, T. J., Schmitt, D. E., Cassol, P. C., & de Oliveira, C. M. B. (2015). Limites críticos ambientais de fósforo no solo para avaliar seu risco de transferência para águas superficiais no estado de Santa Catarina, Brasil. Revista Brasileira De Ciencia Do Solo, 39(4), 1225–1234. https://doi.org/10.1590/01000683rbcs20140461. (PMID: 10.1590/01000683rbcs20140461)
Hammerschmitt, R. K., Tiecher, T. L., Facco, D. B., Silva, L. O. S., Schwalbert, R., Drescher, G. L., et al. (2020). Copper and zinc distribution and toxicity in ‘Jade’ / ‘Genovesa’ young peach tree. Scientia Horticulturae, 259(July 2019), 108763. https://doi.org/10.1016/j.scienta.2019.108763.
He, K., Sun, Z., Hu, Y., Zeng, X., Yu, Z., & Cheng, H. (2017). Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environmental Science and Pollution Research, 24(10), 9387–9398. https://doi.org/10.1007/s11356-017-8548-x. (PMID: 10.1007/s11356-017-8548-x)
Hu, Q., Xiao, Z., Xiong, X., Zhou, G., & Guan, X. (2015). Predicting heavy metals’ adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics. Journal of Environmental Sciences (China), 27(C), 207–216. https://doi.org/10.1016/j.jes.2014.05.036.
Huang, B., Li, Z., Huang, J., Guo, L., Nie, X., Wang, Y., et al. (2014). Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil. Journal of Hazardous Materials, 264, 176–183. https://doi.org/10.1016/j.jhazmat.2013.10.074. (PMID: 10.1016/j.jhazmat.2013.10.074)
Jović, M., Šljivić-Ivanović, M., Dimović, S., Marković, J., & Smičiklas, I. (2017). Sorption and mobility of Co(II) in relation to soil properties. Geoderma, 297, 38–47. https://doi.org/10.1016/j.geoderma.2017.03.006. (PMID: 10.1016/j.geoderma.2017.03.006)
Karaca, O., Cameselle, C., & Reddy, K. R. (2018). Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Biotechnology, 17(1), 205–228. https://doi.org/10.1007/s11157-017-9453-y. (PMID: 10.1007/s11157-017-9453-y)
Li, J. S., Beiyuan, J., Tsang, D. C. W., Wang, L., Poon, C. S., Li, X. D., & Fendorf, S. (2017). Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 182, 31–39. https://doi.org/10.1016/j.chemosphere.2017.05.019. (PMID: 10.1016/j.chemosphere.2017.05.019)
Li, Q., Du, H., Chen, W., Hao, J., Huang, Q., Cai, P., & Feng, X. (2018). Aging shapes the distribution of copper in soil aggregate size fractions. Environmental Pollution, 233, 569–576. https://doi.org/10.1016/j.envpol.2017.10.091. (PMID: 10.1016/j.envpol.2017.10.091)
Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., et al. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023. (PMID: 10.1016/j.ecoenv.2015.12.023)
Manzano, R., Rosende, M., Leza, A., Esteban, E., Peñalosa, J. M., Miró, M., & Moreno-Jiménez, E. (2019). Complementary assessment of As, Cu and Zn environmental availability in a stabilised contaminated soil using large-bore column leaching, automatic microcolumn extraction and DGT analysis. Science of the Total Environment, 690, 217–225. https://doi.org/10.1016/j.scitotenv.2019.06.523. (PMID: 10.1016/j.scitotenv.2019.06.523)
Mishra, S. R., Chandra, R., Kaila, A., & J., & Darshi B., S. (2017). Kinetics and isotherm studies for the adsorption of metal ions onto two soil types. Environmental Technology and Innovation, 7, 87–101. https://doi.org/10.1016/j.eti.2016.12.006. (PMID: 10.1016/j.eti.2016.12.006)
O’Connor, D., Peng, T., Zhang, J., Tsang, D. C. W., Alessi, D. S., Shen, Z., et al. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619–620, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132. (PMID: 10.1016/j.scitotenv.2017.11.132)
Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., & Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of the Total Environment, 658, 1559–1573. https://doi.org/10.1016/j.scitotenv.2018.12.243. (PMID: 10.1016/j.scitotenv.2018.12.243)
Peng, L., Liu, P., Feng, X., Wang, Z., Cheng, T., Liang, Y., et al. (2018). Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochimica Et Cosmochimica Acta, 224, 282–300. https://doi.org/10.1016/j.gca.2018.01.014. (PMID: 10.1016/j.gca.2018.01.014)
Qin, X. Y., Chai, M. R., Ju, D. Y., & Hamamoto, O. (2018). Investigation of plating wastewater treatment technology for chromium, nickel and copper. IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012006.
Read, D. S., Matzke, M., Gweon, H. S., Newbold, L. K., Heggelund, L., Ortiz, M. D., et al. (2016). Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research, 23(5), 4120–4128. https://doi.org/10.1007/s11356-015-4538-z. (PMID: 10.1007/s11356-015-4538-z)
Refaey, Y., Jansen, B., Parsons, J. R., de Voogt, P., Bagnis, S., Markus, A., et al. (2017). Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment. Journal of Environmental Management, 187, 273–285. https://doi.org/10.1016/j.jenvman.2016.11.056. (PMID: 10.1016/j.jenvman.2016.11.056)
Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021. (PMID: 10.1016/j.apgeochem.2017.01.021)
Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., et al. (2013). Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental pollution (Barking, Essex : 1987), 183, 234–242. https://doi.org/10.1016/j.envpol.2012.10.006.
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A. V. L., Francisco, J., Coelho, M. R., Almeida, J. A., Cunha, T. J. F., & Oliveira, J. B. (2018). Sistema brasileiro de classificação de solos (3rd ed., p. 356). Embrapa: Brasília.
Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Science of the Total Environment, 263(1–3), 11–22. https://doi.org/10.1016/S0048-9697(00)00606-9. (PMID: 10.1016/S0048-9697(00)00606-9)
Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2015). Immobilization of soil copper using organic and inorganic amendments. Journal of Plant Nutrition and Soil Science, 178(1), 112–117. https://doi.org/10.1002/jpln.201400400. (PMID: 10.1002/jpln.201400400)
Shi, J., Wu, Q., Zheng, C., & Yang, J. (2018). The interaction between particulate organic matter and copper, zinc in paddy soil. Environmental Pollution, 243, 1394–1402. https://doi.org/10.1016/j.envpol.2018.09.085. (PMID: 10.1016/j.envpol.2018.09.085)
Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). USDA-Natural Resources Conservation Service, Washington DC.
Sołek-Podwika, K., Ciarkowska, K., & Kaleta, D. (2016). Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland). Journal of Environmental Management, 180, 450–458. https://doi.org/10.1016/j.jenvman.2016.05.074. (PMID: 10.1016/j.jenvman.2016.05.074)
Souza, M., Müller Júnior, V., Kurtz, C., dos Santos Ventura, B., Lourenzi, C. R., Lazzari, C. J. R., et al. (2021). Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops. Soil and Tillage Research, 208(October 2019). https://doi.org/10.1016/j.still.2020.104897.
Sparks, D. L. (1999). Soil Physical Chemistry. (D. L. Sparks, Ed.) (2nd ed.). CRC Press.
Sun, W., & Zhang, X. (2017). Estimating soil zinc concentrations using reflectance spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 58, 126–133. https://doi.org/10.1016/j.jag.2017.01.013. (PMID: 10.1016/j.jag.2017.01.013)
Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522–1553. https://doi.org/10.1016/j.scitotenv.2018.07.103. (PMID: 10.1016/j.scitotenv.2018.07.103)
Tahervand, S., & Jalali, M. (2017). Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH. Journal of Geochemical Exploration, 181, 148–159. https://doi.org/10.1016/j.gexplo.2017.07.005. (PMID: 10.1016/j.gexplo.2017.07.005)
Zhang, X., Yan, L., Li, J., & Yu, H. (2020). Adsorption of heavy metals by L-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies. Journal of Colloid and Interface Science, 562, 149–158. https://doi.org/10.1016/j.jcis.2019.12.028. (PMID: 10.1016/j.jcis.2019.12.028)
Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais (2nd ed., p. 174). Porto Alegre, Universidade Federal do Rio Grande do Sul.
Telkapalliwar, N. G., & Shivankar, V. M. (2018). Adsorption of zinc onto microwave assisted carbonized Acacia nilotica bark. Materials Today: Proceedings, 5(10), 22694–22705. https://doi.org/10.1016/j.matpr.2018.06.646. (PMID: 10.1016/j.matpr.2018.06.646)
Tiecher, Tadeu L., Soriani, H. H., Tiecher, T., Ceretta, C. A., Nicoloso, F. T., Tarouco, C. P., et al. (2018). The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, 148(September 2017), 985–994. https://doi.org/10.1016/j.ecoenv.2017.11.074.
Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., et al. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222(January), 203–212. https://doi.org/10.1016/j.scienta.2017.05.026. (PMID: 10.1016/j.scienta.2017.05.026)
Tiecher, T. L., Ceretta, C. A., Comin, J. J., Girotto, E., Miotto, A., de Moraes, M. P., et al. (2013). Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira De Ciencia Do Solo, 37(3), 812–824. https://doi.org/10.1590/S0100-06832013000300028. (PMID: 10.1590/S0100-06832013000300028)
Toselli, M., Baldi, E., Marcolini, G., Malaguti, D., Quartieri, M., Sorrenti, G., & Marangoni, B. (2008). Response of potted pear trees to increasing copper concentration in sandy and clay-loam soils. Journal of Plant Nutrition, 31(12), 2089–2104. https://doi.org/10.1080/01904160802459609. (PMID: 10.1080/01904160802459609)
Violante, A., Krishnamurti, G., & Pigna, M. (2008). Factors affecting the sorption-desorption of trace elements in soil environments. In A. Violante, P. Huang, & G. Gadd (Eds.), Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. John Wiley & Sons, Inc.
Wang, L., Chen, L., Tsang, D. C. W., Li, J. S., Baek, K., Hou, D., et al. (2018). Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 199, 69–76. https://doi.org/10.1016/j.jclepro.2018.07.165. (PMID: 10.1016/j.jclepro.2018.07.165)
WHO - World Health Organization. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. 541p.
Yang, J., Liu, J., Dynes, J. J., Peak, D., Regier, T., Wang, J., et al. (2014). Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Environmental Science and Pollution Research, 21(4), 2943–2954. https://doi.org/10.1007/s11356-013-2214-8. (PMID: 10.1007/s11356-013-2214-8)
Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068. (PMID: 10.1016/j.scitotenv.2018.06.068)
معلومات مُعتمدة: FAPESC Nº 26/2020 Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina
فهرسة مساهمة: Keywords: Agricultural crops; Environmental pollution; Heavy metals; Nutrient transfer
المشرفين على المادة: 0 (Metals, Heavy)
0 (Organic Chemicals)
0 (Soil)
0 (Soil Pollutants)
789U1901C5 (Copper)
J41CSQ7QDS (Zinc)
T1FAD4SS2M (Clay)
تواريخ الأحداث: Date Created: 20220730 Date Completed: 20220802 Latest Revision: 20220802
رمز التحديث: 20221213
DOI: 10.1007/s10661-022-10278-3
PMID: 35907031
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-022-10278-3