دورية أكاديمية

An electrochemical sensor-based carbon black associated with a modified mixed oxide (SiO 2 /TiO 2 /Sb 2 O 5 ) for direct determination of thiamethoxam in raw honey and water samples.

التفاصيل البيبلوغرافية
العنوان: An electrochemical sensor-based carbon black associated with a modified mixed oxide (SiO 2 /TiO 2 /Sb 2 O 5 ) for direct determination of thiamethoxam in raw honey and water samples.
المؤلفون: Gioia RR; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Fernandes JO; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Bernardino CAR; Departamento de Engenharia Civil, COPPE, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Mahler CF; Departamento de Engenharia Civil, COPPE, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Braz BF; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Lopes CSC; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil., Archanjo BS; Instituto Nacional de Metrologia, Qualidade E Tecnologia, Inmetro-Xerém, Duque de Caxias, Brasil., Ribeiro ES; Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.; Avaliação Toxicológica E Remoção de Micropoluentes E Radioativos (INCT-DATREM), Instituto de Química, Unesp, Instituto Nacional de Tecnologias Alternativas Para Detecção, Araraquara (SP), Brazil., D'Elia E; Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.; Avaliação Toxicológica E Remoção de Micropoluentes E Radioativos (INCT-DATREM), Instituto de Química, Unesp, Instituto Nacional de Tecnologias Alternativas Para Detecção, Araraquara (SP), Brazil., Santelli RE; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil., Cincotto FH; Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil. fernandocincotto@gmail.com.; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil. fernandocincotto@gmail.com.
المصدر: Mikrochimica acta [Mikrochim Acta] 2022 Aug 02; Vol. 189 (8), pp. 307. Date of Electronic Publication: 2022 Aug 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag.
مواضيع طبية MeSH: Honey* , Oxides*/chemistry, Electrochemical Techniques/methods ; Electrodes ; Limit of Detection ; Silicon Dioxide ; Soot ; Thiamethoxam ; Titanium ; Water
مستخلص: The study aimed to develop an electrochemical sensor based on glassy carbon, mixed oxide (SiO 2 /TiO 2 /Sb 2 O 5 ), and carbon black. The material was synthesized, characterized, and used to determine thiamethoxam in raw honey and water. The morphologic structure and electrochemical performance of the sensor was characterized by scanning electron microscopy and cyclic voltammetry. Differential pulse voltammetry with a concentration of 0.1 mol L -1 of Britton-Robinson buffer at pH 7.0 allowed the generation of a method to determine thiamethoxam in a linear range of 0.25 to 100.5 μmol L -1 and with a limit of detection of 0.012 μmol L -1 . The system efficiently quantified traces of thiamethoxam in raw honey and tap water samples. The modified sensor did not present interferences of K + , Na + , Ca 2+ , Mg 2+ , glyphosate, imidacloprid, and carbendazim. In addition, the device showed good recovery values for thiamethoxam when applied directly to honey and water samples without any treatment, presenting an electrochemical sensor to monitor real-time hazardous substances in environmental and food matrices.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Sanaullah M, Usman M, Wakeel A et al (2020) Terrestrial ecosystem functioning affected by agricultural management systems: a review. Soil Tillage Res 196:. https://doi.org/10.1016/j.still.2019.104464.
Cressey BYD (2013) Neonics vs bees.
Maienfisch P, Angst M, Brandl F, et al (2001) Chemistry and biology of thiamethoxam : a second generation neonicotinoid †. 913:. https://doi.org/10.1002/ps.365.
Tadeo JL, Albero B, Pérez RA (2019) Analysis of pesticides in food and environmental samples. CRC Press, Boca Raton, Second. (PMID: 10.1201/9781351047081)
Albinati ACL, Albinati RCB, Lira AD, Soares PC (2016) Toxicidade aguda e risco ecotoxicológico do inseticida tiametoxam para alevinos de tilápia-do-nilo. Arq Bras Med Veterinária e Zootec 68:1343–1350. https://doi.org/10.1590/1678-4162-8676. (PMID: 10.1590/1678-4162-8676)
Agência Nacional de Vigilância Sanitária (2021) T48 - Tiametoxam.
Code of Federal Regulations (2014) PART 180 - Tolerances and exemptions for pesticide chemical residues in food.
European Union (2005) EUR-Lex - 32005R0396 - EN - EUR-Lex. In: Off. J. Eur. Union.
European Food Safety Authority (2018) Peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering the uses as seed treatments and granules. EFSA J 16:5179. https://doi.org/10.2903/j.efsa.2018.5179. (PMID: 10.2903/j.efsa.2018.5179)
Bonmatin J, Giorio C, Girolami V et al (2015) Environmental fate and exposure; neonicotinoids and fipronil. 35–67. https://doi.org/10.1007/s11356-014-3332-7.
Mitchell EAD, Mulhauser B, Mulot M, Aebi A (2017) A worldwide survey of neonicotinoids in honey. 111:109–111.
Woodcock BA, Isaac NJB, Bullock JM et al (2016) population changes in wild bees in England. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms12459. (PMID: 10.1038/ncomms12459)
Tsvetkov N, Sood K, Patel HS et al (2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. 1397:1395–1397.
Barbosa MO, Moreira NFF, Ribeiro AR et al (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279. https://doi.org/10.1016/j.watres.2016.02.047. (PMID: 10.1016/j.watres.2016.02.04726967909)
Jeong I, Kwak B, Ahn J, Jeong S (2012) Determination of pesticide residues in milk using a QuEChERS-based method developed by response surface methodology. Food Chem 133:473–481. https://doi.org/10.1016/j.foodchem.2012.01.004. (PMID: 10.1016/j.foodchem.2012.01.00425683422)
Kiljanek T, Niewiadowska A, Semeniuk S, et al (2016) Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry — honeybee poisoning incidents. 1435:100–114. https://doi.org/10.1016/j.chroma.2016.01.045.
Filippo P Di, Pomata D, Riccardi C et al (2017) Determination of pesticides in the respirable fraction of airborne particulate matter by high-performance liquid chromatography – tandem mass spectrometry determination of pesticides in the respirable fraction of airborne particulate matter by high-perfo. 2719:. https://doi.org/10.1080/00032719.2017.1338713.
Hao C, Eng ML, Sun F, Morrissey CA (2018) Science of the total environment part-per-trillion LC-MS / MS determination of neonicotinoids in small volumes of songbird plasma. Sci Total Environ 644:1080–1087. https://doi.org/10.1016/j.scitotenv.2018.06.317. (PMID: 10.1016/j.scitotenv.2018.06.31730743821)
Suganthi A, Bhuvaneswari K, Ramya M (2017) Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS. Food Chem. https://doi.org/10.1016/j.foodchem.2017.08.098. (PMID: 10.1016/j.foodchem.2017.08.09828958529)
Wang J (2006) Analytical electrochemistry. John Wiley & Sons Inc, Hoboken, NJ, USA. (PMID: 10.1002/0471790303)
Wong A, Santos AM, Cincotto FH et al (2020) A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 206:120252. https://doi.org/10.1016/j.talanta.2019.120252. (PMID: 10.1016/j.talanta.2019.12025231514822)
Fernandes JO, Bernardino CAR, Braz BF et al (2021) (Bio)Sensing materials: quantum dots. In: Reference Module in Biomedical Sciences. Elsevier.
Liu YC, Hsu WF, Wu TM (2020) Electrochemical determination of dopamine using a conductive polypyrrole/carbon-coated mesoporous silica composite electrode. J Appl Electrochem 50:311–319. https://doi.org/10.1007/s10800-019-01391-2. (PMID: 10.1007/s10800-019-01391-2)
Arduini F, Cinti S, Mazzaracchio V et al (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156:112033. https://doi.org/10.1016/j.bios.2020.112033. (PMID: 10.1016/j.bios.2020.11203332174547)
Baccarin M, Santos FA, Vicentini FC et al (2017) Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem 799:436–443. https://doi.org/10.1016/j.jelechem.2017.06.052. (PMID: 10.1016/j.jelechem.2017.06.052)
Cincotto FH, Canevari TC, Machado SAS (2014) Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol. Electroanalysis 26:2783–2788. https://doi.org/10.1002/elan.201400451. (PMID: 10.1002/elan.201400451)
Sharma S, Singh N, Tomar V, Chandra R (2018) A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens Bioelectron 107:76–93. (PMID: 10.1016/j.bios.2018.02.013)
Canevari TC, Vinhas RCG, Landers R, Gushikem Y (2011) SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola’s blue: application as an electrochemical sensor for NADH. Biosens Bioelectron 26:2402–2406. https://doi.org/10.1016/j.bios.2010.10.020. (PMID: 10.1016/j.bios.2010.10.02021067911)
Wutke NB, Diniz KM, Corazza MZ et al (2016) Preconcentration of nickel(II) by a mini-flow system with a novel ternary oxide solid phase and flame atomic absorption spectrometry. Anal Lett 49:723–736. https://doi.org/10.1080/00032719.2015.1041025. (PMID: 10.1080/00032719.2015.1041025)
da Fonseca BT, D’Elia E, Júnior JMS et al (2018) Study of the characteristics, properties and characterization of new SiO2/TiO2/Sb2O5 ternary oxide obtained by the sol–gel process. J Mater Sci Mater Electron 29:2159–2169. https://doi.org/10.1007/s10854-017-8128-3. (PMID: 10.1007/s10854-017-8128-3)
Ajermoun N, Farahi A, Lahrich S et al (2019) Electrocatalytic activity of the metallic silver electrode for thiamethoxam reduction: application for the detection of a neonicotinoid in tomato and orange samples. J Sci Food Agric 99:4407–4413. https://doi.org/10.1002/jsfa.9675. (PMID: 10.1002/jsfa.967530860596)
Ajermoun N, Lahrich S, Farahi A et al (2020) Electrodeposition of silver onto carbon graphite and their catalysis properties toward thiamethoxam reduction: application in food and beverage samples. Heliyon 6:e05784. https://doi.org/10.1016/j.heliyon.2020.e05784. (PMID: 10.1016/j.heliyon.2020.e05784333768267758523)
Kumaravel A, Chandrasekaran M (2012) Nanosilver/surfactant modified glassy carbon electrode for the sensing of thiamethoxam. Sensors Actuators B Chem 174:380–388. https://doi.org/10.1016/j.snb.2012.08.054. (PMID: 10.1016/j.snb.2012.08.054)
Navalón A, Ei-Khattabi R, González-Casado A, Vilchez JL (1999) Differential-pulse polarographic determination of the insecticide imidacloprid in commercial formulations. Mikrochim Acta 130:261–265. https://doi.org/10.1007/bf01242914. (PMID: 10.1007/bf01242914)
IUPAC (2014) Compendium of chemical terminology, 2nd ed. International Union of Pure and Applied Chemistry Compendium, Research Triangle Park, NC.
Guzsvány VJ, Gaál FF, Bjelica LJ, Ökrész SN (2005) Voltammetric determination of imidacloprid and thiamethoxam. J Serbian Chem Soc 70:735–743. https://doi.org/10.2298/JSC0505735G. (PMID: 10.2298/JSC0505735G)
Urbanová V, Bakandritsos A, Jakubec P, et al (2017) Biosensors and Bioelectronics A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. 89:532–537. https://doi.org/10.1016/j.bios.2016.03.039.
Peng S, Wang A, Lian Y et al (2021) Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLoS One 16:. https://doi.org/10.1371/journal.pone.0258508.
Wang Q, Zhangsun H, Zhao Y et al (2021) Macro-meso-microporous carbon composite derived from hydrophilic metal-organic framework as high-performance electrochemical sensor for neonicotinoid determination. J Hazard Mater 411:. https://doi.org/10.1016/j.jhazmat.2021.125122.
Oliveira AEF, Bettio GB, Pereira AC (2018) An electrochemical sensor based on electropolymerization of ß-cyclodextrin and reduced graphene oxide on a glassy carbon electrode for determination of neonicotinoids. Electroanalysis 30:1918–1928. https://doi.org/10.1002/elan.201800236. (PMID: 10.1002/elan.201800236)
Xie T, Zhang M, Chen P et al (2017) A facile molecularly imprinted electrochemical sensor based on graphene: application to the selective determination of thiamethoxam in grain. RSC Adv 7:38884–38894. https://doi.org/10.1039/C7RA05167K. (PMID: 10.1039/C7RA05167K)
معلومات مُعتمدة: 429462/2018-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico; E-26/202.696/2019 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; E-26/010.002267/2019 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; E-26/202.295/2018 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
فهرسة مساهمة: Keywords: Carbon black; Electrochemical sensors; Environmental samples; Mixed oxide; Thiamethoxam pesticide
المشرفين على المادة: 0 (Oxides)
0 (Soot)
059QF0KO0R (Water)
15FIX9V2JP (titanium dioxide)
747IC8B487 (Thiamethoxam)
7631-86-9 (Silicon Dioxide)
D1JT611TNE (Titanium)
تواريخ الأحداث: Date Created: 20220802 Date Completed: 20220804 Latest Revision: 20220811
رمز التحديث: 20240628
DOI: 10.1007/s00604-022-05412-4
PMID: 35917034
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-5073
DOI:10.1007/s00604-022-05412-4