دورية أكاديمية

Antibiotic resistance of airborne bacterial populations in a hospital environment.

التفاصيل البيبلوغرافية
العنوان: Antibiotic resistance of airborne bacterial populations in a hospital environment.
المؤلفون: Tamsi NSF; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.; Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia., Latif MT; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. talib@ukm.edu.my., Othman M; Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.; Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia., Abu Bakar FD; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia., Yusof HM; Department of Community Health, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Cheras, Malaysia., Noraini NMR; National Institute of Occupational Safety and Health, NIOSH, Lot 1, Jalan 15/1, Seksyen 15, 43650, Bandar Baru Bangi, Selangor, Malaysia., Zahaba M; Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia., Sahani M; Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2022 Aug 02; Vol. 194 (9), pp. 629. Date of Electronic Publication: 2022 Aug 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Cross Infection* , Staphylococcus aureus*, Angiotensin Receptor Antagonists/pharmacology ; Angiotensin-Converting Enzyme Inhibitors/pharmacology ; Anti-Bacterial Agents/pharmacology ; Bacteria ; Drug Resistance, Bacterial ; Drug Resistance, Microbial ; Environmental Monitoring ; Hospitals ; Humans
مستخلص: Bacteria in a hospital environment potentially cause hospital-acquired infections (HAIs), particularly in immunocompromised individuals. Treatments of HAIs with antibiotics, however, are ineffective due to the emergence of antibiotic-resistant bacteria (ARB). This study aims to identify airborne bacteria in a tertiary hospital in Malaysia and screen for their resistance to commonly used broad-spectrum antibiotics. Airborne bacteria were sampled using active sampling at the respiratory ward (RW), physician clinic (PC) and emergency department (ED). Physical parameters of the areas were recorded, following the Industry Code of Practice on Indoor Air Quality 2010 (ICOP IAQ 2010). Bacterial identification was based on morphological and biochemical tests. Antibiotic resistance screening was carried out using the Kirby-Bauer disk diffusion method. Results showed that the highest bacterial population was found in the highest density occupancy area, PC (1024 ± 54 CFU/m 3 ), and exceeded the acceptable limit. Micrococcus spp., Staphylococcus aureus, α- and β-Streptococcus spp., Bacillus spp. and Clostridium spp. colonies were identified at the sampling locations. The antibiotic resistance screening showed a vast percentage of resistance amongst the bacterial colonies, with resistance to ampicillin observed as the highest percentage (Micrococcus spp.: 95.2%, S. aureus: 100%, Streptococcus spp.: 75%, Bacillus spp.: 100% and Clostridium spp.: 100%). This study provides awareness to healthcare practitioners and the public on the status of the emergence of ARB in a hospital environment. Early detection of bacterial populations and good management of hospital environments are important prevention measures for HAI.
(© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Aditya, R., & Dirgagita, R. (2005). Identification of bacteria on postcesarean section patient ’ s wound operation. Indonesian Journal of Obstetrics and Gynecology, 9(1), 38–41.
Akinboyo, I. C., & Nolt, D. (2021). Hospital infection prevention for pediatric transplant recipients and oncology patients. Pediatric Transplant and Oncology Infectious Diseases. https://doi.org/10.1016/B978-0-323-64198-2.00021-X. (PMID: 10.1016/B978-0-323-64198-2.00021-X)
Ali, J., Rafiq, Q. A., & Ratcliffe, E. (2018). Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA, 4(4). https://doi.org/10.4155/fsoa-2017-0109.
Ali, M., et al. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease a Month, 66. https://doi.org/10.1016/j.disamonth.2020.100971.
Arub, S., et al. (2020). Assessment of waste generation rate in teaching hospitals of metropolitan city of Pakistan. Civil Engineering Journal, 6(9), 1809–1821. (PMID: 10.28991/cej-2020-03091584)
Bahauddin, A. (2014). Indoor air quality in adaptively reused heritage buildings at a UNESCO world heritage site, Penang, Malaysia. Journal of Construction in Developing Countries, 19(1), 69–91.
Begum, S., et al. (2021). A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biological and Pharmaceutical Sciences, 14(2), 087–097. (PMID: 10.30574/gscbps.2021.14.2.0037)
Department of Occupational Safety and Health. (2010). Industry code of practice on indoor air quality 2010. Ministry of Human Resources. JKKP DP (S) 127/379/4-39.
Döhla, M., et al. (2019). Correction to: Assessment of the prevalence of antibiotic-resistant bacteria and the concentration of antibiotics in EU bathing waters in Western Germany. Exposure and Health, 12, 323–334. https://doi.org/10.1007/s12403-019-00315-x.
Faddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd edn). Lippincott Williams & Wilkin.
Gangneux, J. P. (2020). Metagenomic characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non-asthma patients using next generation sequencing. Frontiers in Microbiology, 1671.
Gao, X. (2018). Airborne microbial communities in the atmospheric environment of urban hospitals in China. Journal of Hazardous Materials, 349, 10–17. https://doi.org/10.1016/j.jhazmat.2018.01.043. (PMID: 10.1016/j.jhazmat.2018.01.043)
Gill, A., et al. (2019). Respiratory medicine case reports fluoroquinolone resistant tuberculosis : A case report and literature review. Respiratory Medicine Case Reports, 27(March), 100829. https://doi.org/10.1016/j.rmcr.2019.100829. (PMID: 10.1016/j.rmcr.2019.100829)
Hassan, et al. (2020). Isolation of antibiotic resistant bacteria from rivers in Kelantan, Malaysia. International Journal of Life Sciences and Biotechnology, 3(2), 291–307. https://doi.org/10.38001/ijlsb.712542. (PMID: 10.38001/ijlsb.712542)
Holt, J. G. (1994). Bergey’s manual of determinative bacteria (9th edn). Lippincott Williams & Wilkins.
Jagai, J. S., et al. (2013). Putting regulatory data to work at the service of public health: Utilizing data collected under the Clean Water Act. Water Quality, Exposure and Health, 5(3), 117–125. https://doi.org/10.1007/s12403-013-0095-1. (PMID: 10.1007/s12403-013-0095-1)
Khaidi, N. A. K. M., et al. (2021). The presence of microbial air contaminants in the operating theatre at a teaching hospital in East Coast Malaysia. The Open Biology Journal, 9, 11–16. https://doi.org/10.2174/1874196702109010011. (PMID: 10.2174/1874196702109010011)
Kim, K. Y., Kim, Y. S., & Kim, D. (2010). Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Industrial Health, 48, 236–243. (PMID: 10.2486/indhealth.48.236)
Kováts, N., et al. (2019). Exotic airborne bacteria identified in urban resuspended dust by next generation sequencing. In E3S Web of Conferences, 99, 04009. EDP Sciences.
Laffite, A., et al. (2019). Prevalence of β-lactam and sulfonamide resistance genes in a freshwater reservoir, Lake Brêt, Switzerland. Exposure and Health. https://doi.org/10.1007/s12403-019-00304-0.
Luhung, I., et al. (2018). Exploring temporal patterns of bacterial and fungal DNA accumulation on a ventilation system filter for a Singapore university library. PLoS ONE, 13(7), e0200820. (PMID: 10.1371/journal.pone.0200820)
Mirhoseini, S. H., et al. (2016). Hospital air: a potential route for transmission of infections caused by β-lactam–resistant bacteria. AJIC: American Journal of Infection Control, 1–7. https://doi.org/10.1016/j.ajic.2016.01.041.
Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens, 5, 481–511. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015. (PMID: 10.1128/microbiolspec.VMBF-0016-2015)
Nuntiis, P. D., & Palla, F. (2017). Bioaerosol. In Biotechnology and Conservation of Cultural Heritage (pp. 31–48). Springer, Cham.
Ovadia, A., & Roifman, C. M. (2016). Principles of treatment of primary immunodeficiencies. Elsevier. https://doi.org/10.1016/B978-0-12-374279-7.18025-7. (PMID: 10.1016/B978-0-12-374279-7.18025-7)
Sánchez-Barroso, G., & Sanz-Calcedo, J. G. (2019). Application of predictive maintenance in hospital heating, ventilation and air conditioning facilities. Emerging Science Journal, 3(5), 337–343. (PMID: 10.28991/esj-2019-01196)
Schmid, A., et al. (2019). Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections:Systematic review and meta-analysis. Scientific Reports, 1–11. https://doi.org/10.1038/s41598-019-51711-x.
Shivani, D., et al. (2020). Isolation of micro-flora from hospital sites. World Journal of Pharmaceutical Research, 9(8), 547–554. https://doi.org/10.20959/wjpr20208-18125. (PMID: 10.20959/wjpr20208-18125)
Sivagnanasundaram, P., et al. (2019). Assessment of airborne bacterial and fungal communities in selected areas of teaching hospital, Kandy, Sri Lanka. Biomedical Reserach International. https://doi.org/10.1155/2019/7393926.
Solomon, F. B., et al. (2017). Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral. Hospital in South Ethiopia Annals of Clinical Microbiology and Antimicrobials, 1–7. https://doi.org/10.1186/s12941-017-0204-2.
Suwarno, I., et al. (2020). Using a combination of PID control and Kalman filter to design of IoT-based telepresence self-balancing robots during COVID-19 pandemic. Emerging Science Journal, 4, Special Issue IoT, IoV, and Blockchain.
Stephen, J., Ronald, J., Yvette, S., José, H., Ivonne, D., Robert, L., Susan, E., & Carol, A. (2005). Manual of antimicrobial susceptibility testing (pp. 39–40). American Society for Microbiology.
Tamsi, N. S. F., Latif, M. T., Othman, M., Bakar, F. D. A., & Sahani, M. (2021). Study on the population of airborne bacteria and antibiotic resistance from a hospital environment. Proceeding 1st International Conference on Moisture in Buildings 2021 (ICMB21). https://doi.org/10.14293/ICMB210083.
Tang, W., et al. (2020). Prevalence of opportunistic pathogens and diversity of microbial communities in the water system of a pulmonary hospital. Biomedical and Environmental Sciences, 33(4), 248–259. https://doi.org/10.3967/bes2020.034. (PMID: 10.3967/bes2020.034)
Thallinger, G. G., & Gorkiewicz, G. (2017). Critical issues in mycobiota analysis. Frontiers in Microbiology, 8(180). https://doi.org/10.3389/fmicb.2017.00180.
Van der Merwe, C. (2020). A pilot study to evaluate the airborne bacterial load in veterinary surgical theatres without controlled ventilation systems. University of Pretoria.
WHO. (2002) The World Health Report 2002.
Wu, B., et al. (2020). Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Environment International, 137. https://doi.org/10.1016/j.envint.2020.105479.
Yassin, M. F., & Almouqatea, S. (2010). Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Indoor and Outdoor Bacterial Contamination, 7(3), 535–544.
Zahar, M., & Fazir, F. (2020). Understanding clinical waste management and the risk of cross-contamination diseases in Malaysian Public Healthcare Facilities. European Journal of Molecular & Clinical Medicine, 7(02).
Zhou, Z., et al. (2021). Spread of antibiotic resistance genes and microbiota in airborne particulate matter, dust and human airways in the urban hospital. Environment International, 153, 106501. https://doi.org/10.1016/j.envint.2021.106501. (PMID: 10.1016/j.envint.2021.106501)
فهرسة مساهمة: Keywords: Antibiotic resistant bacteria; Hospital-acquired infection; Indoor air quality; Potential pathogens
المشرفين على المادة: 0 (Angiotensin Receptor Antagonists)
0 (Angiotensin-Converting Enzyme Inhibitors)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20220802 Date Completed: 20220804 Latest Revision: 20220804
رمز التحديث: 20221213
DOI: 10.1007/s10661-022-10291-6
PMID: 35918614
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-022-10291-6