دورية أكاديمية

Simultaneous determination of furosemide and carbamazepine in biological matrices by solvent bar microextraction combined with high-performance liquid chromatography-diode array detector and central composite design.

التفاصيل البيبلوغرافية
العنوان: Simultaneous determination of furosemide and carbamazepine in biological matrices by solvent bar microextraction combined with high-performance liquid chromatography-diode array detector and central composite design.
المؤلفون: Al-Hashimi NN; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Al-Zarqa, Jordan., Al-Degs YS; Department of Chemistry, Faculty of Science, The Hashemite University, Al-Zarqa, Jordan., Jaafreh S; Department of Chemistry, Faculty of Science, The Hashemite University, Al-Zarqa, Jordan., Al-Khatib HS; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan., El-Sheikh AH; Department of Chemistry, Faculty of Science, The Hashemite University, Al-Zarqa, Jordan., Abdelghani JI; Department of Chemistry, Faculty of Science, The Hashemite University, Al-Zarqa, Jordan., Jaber MR; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Al-Zarqa, Jordan.
المصدر: Biomedical chromatography : BMC [Biomed Chromatogr] 2022 Nov; Vol. 36 (11), pp. e5476. Date of Electronic Publication: 2022 Aug 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8610241 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0801 (Electronic) Linking ISSN: 02693879 NLM ISO Abbreviation: Biomed Chromatogr Subsets: MEDLINE
أسماء مطبوعة: Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
مواضيع طبية MeSH: Liquid Phase Microextraction*/methods, Benzodiazepines ; Carbamazepine ; Chromatography, High Pressure Liquid/methods ; Furosemide ; Humans ; Solvents
مستخلص: A sensitive and simple sample pretreatment method based on a two-phase solvent bar microextraction (SBME) technique coupled with HPLC-diode array detector (DAD) was developed for simultaneous extraction and determination of trace amounts of furosemide and carbamazepine in human urine and plasma samples. The significance of operational factors on carbamazepine and furosemide extraction efficiency % (EE%) was screened using full factorial design (FFD) while central composite design (CCD) was used to model the entire process. A quadratic model was found convenient to correlate the extraction EE% of selected drugs with dominant experimental factors. A Pareto chart was also used to examine the importance of factors on drugs' EE%. The analytical performance of the method in urine and plasma samples demonstrated good linearity (R 2 ˃ 0.992) with detection limits ranging from 4.2 to 10.9 μg L -1 , and extraction recovery over 89.45% for both drugs in urine and plasma samples. A comparison against published methods was also performed and the results revealed that the developed method exhibits a confident sensitivity, feasible operation, and simple analysis for both drugs. Finally, the practicability of the validated SBME-HPLC-DAD method was demonstrated by successfully applying it to the analysis of furosemide and carbamazepine in real patient urine samples.
(© 2022 John Wiley & Sons Ltd.)
References: Almeida, C., Ahmad, S., & Nogueira, J. (2017). Bar adsorption microextraction technique- application for the determination of pharmaceuticals in real matrices. Analytical and Bioanalytical Chemistry, 409, 2093-2106. https://doi.org/10.1007/s00216-016-0156-y.
Badiee, H., Zanjanchi, M., Zamani, A., & Fashi, A. (2019). Solvent bar microextraction technique with three-hollow fiber configuration for trace determination of nitrite in river water samples. Environmental Science and Pollution Research, 26, 32967-32976. https://doi.org/10.1007/s11356-019-06336-y.
Braun, M., Barstow, C., & Pyzocha, N. (2015). Diagnosis and management of sodium disorders: Hyponatremia and hypernatremia. American Academy of Family Physicians, 91, 299-307.
Brereton, R. (2007). Applied chemometrics. John Wiley & Sons Ltd. https://doi.org/10.1002/9780470057780.
Cruz, J., Maness, D., & Yakatan, G. (1979). Kinetic and mechanism of hydrolysis of furosemide. International Journal of Pharmaceutics, 2, 275-281. https://doi.org/10.1016/0378-5173(79)90034-6.
Darvishnejad, F., Raoof, J., & Ghani, M. (2021). In-situ synthesis of nanocubic cobalt oxide @ graphene oxide nanocomposite reinforced hollow-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from quantification via high-performance liquid chromatography-ultraviolet detection. Journal of Chromatography a, 1641, 1-10. https://doi.org/10.1016/j.chroma.2021.461984.
Dugheri, S., Mucci, N., Bonari, A., Marrubini, G., Cappeli, G., Ubiali, D., Campagna, M., Montalti, M., & Arcangeli, G. (2020). Liquid phase microextraction techniques combined with chromatography analysis: A review. Acta Chromatographica, 32, 69-79. https://doi.org/10.1556/1326.2019.00636.
Ensano, B., Borea, L., Naddeo, V., Belgiorno, V., Luna, M., & Ballesteros, J. (2017). Removal of pharmaceuticals from wastewater by intermittent electrocoagulation. Water, 9, 1-15. https://doi.org/10.3390/w9020085.
Falhammar, H., Lindh, J., Calissendorff, J., Farmand, S., Skov, J., Nathanson, D., & Mannheimer, B. (2018). Different in associations of antiepileptic drugs and hospitalization due hyponatremia: A population-based case-control study. Seizure, 59, 28-33. https://doi.org/10.1016/j.seizure.2018.04.025.
Filippatos, T., Makri, A., Elisaf, M., & Liamis, G. (2017). Hyponatremia in the elderly: Challenges and solutions. Clinical Interventions in Aging, 12, 1957-1965. https://doi.org/10.2147/CIA.S138535.
Ghasemi, E., Kheradmand, S., & Dadrass, O. (2014). Solvent bar microextraction combined with high-performance liquid chromatography for preconcentration and determination of pramipexole in biological samples. Biomedical Chromatography, 28, 486-491. https://doi.org/10.1002/bmc.3058.
Ghoraba, Z., Aibaghi, B., & Soleymanpor, A. (2017). Application of cation-modified sulfur nanoparticles as an efficient sorbent for separation and preconcentration of carbamazepine in biological and pharmaceutical samples prior to its determination by high-performance liquid chromatography. Journal of Chromatography B, 1063, 245-252. https://doi.org/10.1016/j.jchromb.2017.07.048.
Huang, Y., Shi, R., Gee, W., & Bonderud, R. (2012). Regulated drug from human pharmacokinetic studies and therapeutic drug management. Bioanalysis, 4, 1919-1031. https://doi.org/10.4155/bio.12.157.
Jiang, X., & Lee, H. (2004). Solvent bar microextraction. Analytical Chemistry, 76, 5591-5596. https://doi.org/10.1021/ac040069f.
Kahkha, M., Oveisi, A., Kaykhaii, M., & Kahkha, B. (2018). Determination of carbamazepine in urine and water samples using amino-functionalized metal-organic framework as sorbent. Chemistry Central Journal, 12, 2-12.
Katta, N., Balla, S., & Alpert, M. (2016). Does log-term furosemide therapy cause thiamine deficiency in patients with heart failure? A focused review. The American Journal of Medicine, 129, e8-e11. https://doi.org/10.1016/j.amjmed.2016.01.037.
Kaushal, C., & Srivastava, B. (2010). A process of method development: A chromatographic approach. Journal of Chemical Research, 2, 519-545.
Kokosa, J. (2019). Selection an extraction solvent for a greener liquid phase microextraction (LPME) mode based analytical method. TrAC Trends in Analytical Chemistry, 118, 238-247. https://doi.org/10.1016/j.trac.2019.05.012.
Krisanapan, K., Vonagsanim, S., Pin-on, P., Ruengorn, C., & Noppakun, K. (2020). Efficacy of furosemide, oral sodium chloride, and fluid restriction for treatment of syndrome of inappropriate antidiuresis (SIAD): An open-label randomized controlled study (the effuse-fluid trial). American Journal of Kidney Diseases, 76, 203-212. https://doi.org/10.1053/j.ajkd.2019.11.012.
Lawthom, C., Peltola, J., McMurray, R., Dodd, E., & Villanueva, V. (2018). Dibenzazepine agents in epilepsy: How does eslicarbazepine acetate differ? Neurology and Therapy, 7, 195-206. https://doi.org/10.1007/s40120-018-0111-2.
López-López, J., Juan, C., Mendiguchía, C., Pinto, J., & Moreno, C. (2019). Application of solvent-bar micro-extraction for the determination of organic and inorganic compounds. TrAC Trends in Analytical Chemistry, 110, 57-65. https://doi.org/10.1016/j.trac.2018.10.034.
Lovett, L., Nygard, G., Dura, P., & Khalil, S. (1985). An improved HPLC method for the determination of furosemide in plasma and urine. Journal of Liquid Chromatography, 8, 1611-1628. https://doi.org/10.1080/01483918508074082.
Mashayekhi, H., Abroomand-Azar, P., Saber-Tehrani, M., & Husain, S. (2010). Rapid determination of carbamazepine in human urine, plasma samples and water using DLLME followed by RP-LC. Chromatographia, 71, 517-521. https://doi.org/10.1365/s10337-009-1456-6.
Miková, B., Dvořák, M., Ryšavá, L., Malá, Z., Gebauer, P., & Kubáñ, P. (2022). At-line coupling of hollow fiber liquid-phase microextraction to capillary electrophoresis for trace determination of acidic drugs in complex samples. Talanta, 238, 1-9. https://doi.org/10.1016/j.talanta.2021.123068.
Mohammadi, V., Jafari, M., & Saraji, M. (2020). Solvent holder-assisted liquid-phase microextraction using nano-structure biomass-derived carbonaceous aerogel combined with ion mobility spectrometry for simultaneous determination of ethion and chlorpyrifos. Microchimica Acta, 187, 1-10. https://doi.org/10.1007/s00604-020-4215-x.
Nunes, C., Freitas, M., Pinheiroa, A., & Bastosa, S. (2012). Chemoface: A novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23, 2003-2010. https://doi.org/10.1590/S0103-50532012005000073.
Oh, S., & Han, S. (2015). Loop diuretics in clinical practice. Electrolyte Blood Press, 3, 17-21. https://doi.org/10.5049/EBP.2015.13.1.17.
Prakash, S., Bhatia, P., Raheja, S., & Pawar, M. (2016). Carbamazepine-induced hyponatremia. British Journal of Anaesthesia, 117, 1-3. https://doi.org/10.1093/bja/el_13266.
Queiroz, R., Bertucci, C., Malfar, W., Dreossi, S., Chaves, A., Valério, D., & Queiroz, M. (2008). Quantification of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples by stir bar-sorptive extraction and liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 48, 428-434. https://doi.org/10.1016/j.jpba.2008.03.020.
Rajski, Ł., Lozano, A., Uclés, A., Ferrer, C., & Fernández-Alba, A. (2013). Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. Journal of Chromatography a, 23, 109-120. https://doi.org/10.1016/j.chroma.2013.06.070.
Rutkowska, M., Plotka-Wasylka, J., Sajid, M., & Andruch, V. (2019). Liquid-phase microextraction: A review of reviews. Microchemical Journal, 149, 103989-104013. https://doi.org/10.1016/j.microc.2019.103989.
Seidi, S., Rezazadeh, Y., & Yamini, Y. (2018). Pharmaceutical applications of liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 108, 296-305. https://doi.org/10.1016/j.trac.2018.09.014.
Smallwood, M. (1996). Handbook of organic solvent properties. Arnold.
Tchekalarova, J., Ivanova, N., Atanasova, D., Pechlivanova, D., Lazarov, N., Kortenska, L., Mitreva, R., Lozanov, V., & Stoynev, A. (2016). Long-term treatment with losartan attenuates seizure activity and neuronal damage without affecting behavioral changes in a model of co-morbid hypertension and epilepsy. Cellular and Molecular Neurobiology, 36, 927-941. https://doi.org/10.1007/s10571-015-0278-3.
Tiwari, G., & Tiwari, R. (2010). Bioanalytical method validation: An update review. Pharmaceutical Methods, 1, 25-38. https://doi.org/10.4103/2229-4708.72226.
Uumar, A., & Mishra, P. (2008). Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using box-Behnken design. Journal of Hazardous Materials, 150, 174-182.
Wang, J., Weng, P., Zhou, J., Zhang, X., & Cui, S. (2017). Carrier-mediated solvent bar microextraction coupled with HPLC-DAD for the quantitative analysis of the hydrophilic antihypertensive peptide VLPVPR in human plasma. Analytical Methods, 10, 69-75. https://doi.org/10.1039/C7AY01927K.
Wenk, M., Haegeli, L., Brunner, H., & Krähenbühl, S. (2006). Determination of furosemide in plasma and urine using monolithic silica rod liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 41, 1367-1370. https://doi.org/10.1016/j.jpba.2006.02.025.
Wilner, A., Sharma, B., Soucy, A., Thompson, A., & Krueger, A. (2014). Common comorbidities in women and men with epilepsy and the relationship between number of comorbidities and health plan paid costs in 2010. Epilepsy & Behavior, 32, 15-20. https://doi.org/10.1016/j.yebeh.2013.12.032.
Xu, W., Chen, Y.-L., Zhao, Y., Wang, L.-J., Li, J.-J., & Liu, C.-F. (2018). A clinical study of toxication caused by carbamazepine abuse in adolescents. BioMed Research International, 2018, 1-6. https://doi.org/10.1155/2018/3201203.
Zhang, Z., Wang, D., Zhang, L., Du, M., & Chen, G. (2008). Determination of diuretics in human urine by hollow fiber-based liquid-liquid-liquid microextraction coupled to high performance liquid chromatography. Analyst, 133, 1187-1194. https://doi.org/10.1039/b802679c.
معلومات مُعتمدة: The Deanship of Scientific Research at The Hashemite University
فهرسة مساهمة: Keywords: HPLC-DAD; biological matrices; central composite design; design of experiment; furosemide and carbamazepine; solvent bar microextraction
المشرفين على المادة: 0 (Solvents)
12794-10-4 (Benzodiazepines)
33CM23913M (Carbamazepine)
7LXU5N7ZO5 (Furosemide)
تواريخ الأحداث: Date Created: 20220803 Date Completed: 20221004 Latest Revision: 20221004
رمز التحديث: 20231215
DOI: 10.1002/bmc.5476
PMID: 35918842
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0801
DOI:10.1002/bmc.5476