دورية أكاديمية

Functional development of olfactory nerve-related neural circuits in the embryonic chick forebrain revealed by voltage-sensitive dye imaging.

التفاصيل البيبلوغرافية
العنوان: Functional development of olfactory nerve-related neural circuits in the embryonic chick forebrain revealed by voltage-sensitive dye imaging.
المؤلفون: Sato K; Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Tokyo, Japan., Momose-Sato Y; Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Yokohama, Japan.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2022 Sep; Vol. 56 (6), pp. 4914-4929. Date of Electronic Publication: 2022 Aug 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: Olfactory Nerve* , Voltage-Sensitive Dye Imaging*, Electric Stimulation/methods ; Olfactory Bulb/physiology ; Prosencephalon ; Receptors, N-Methyl-D-Aspartate
مستخلص: Multiple-site optical recordings with NK2761, a voltage-sensitive absorption dye, were applied to the embryonic chick olfactory system, and the functional development of olfactory nerve (N.I)-related neural circuits was examined in the forebrain. The stimulation of the N. I elicited neural responses in N.I-olfactory bulb (OB)-forebrain preparations at the embryonic 8-12 day (E8-E12) stages. At the E11 stage, we functionally identified two circuits projecting from the OB to the forebrain. The first circuit passed through the ventral side of the forebrain and spread in the dorso-caudal direction, whereas the second circuit passed through the dorsal side to the first circuit. Pharmacological experiments showed that N-methyl- D -aspartate (NMDA) receptor function was more significant for the transfer of sensory information in these circuits. The functional development of N.I-related circuits was investigated, and the results obtained revealed that the ventral circuit was generated earlier than the dorsal circuit. Neural responses in the ventral circuit were detected from the E9 stage in normal physiological solution and the E8 stage in Mg 2+ -free solution, which activated NMDA receptor function. At the E10 stage, neural responses in the dorsal circuit were clearly recognised in addition to ventral responses. We attempted to identify possible candidates for relay nuclei in the forebrain by comparing contour line maps of the optical signal amplitude with previously reported neuroanatomical data. The results suggest that N.I-related neural circuits from the periphery to the subpallium functionally mature earlier than those to the pallium during ontogenesis.
(© 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Breazile, J. E. (1979). Systema nervosum centrale. In J. J. Baumel, A. S. King, A. M. Lucas, J. E. Breazile, & H. E. Evans (Eds.), Nomina Anatomica Avium (pp. 417-472). Academic Press.
Breazile, J. E., & Yasuda, M. (1979). Systema nervosum peripheriale. In J. J. Baumel, A. S. King, A. M. Lucas, J. E. Breazile, & H. E. Evans (Eds.), Nomina Anatomica Avium (pp. 473-503). Academic Press.
Canepari, M., Zecevic, D., & Bernus, O. (2015). Membrane potential imaging in the nervous system and heart. Springer.
Clayton, N. S., & Emery, N. J. (2015). Avian models for human cognitive neuroscience. Neuron, 86, 1330-1342. https://doi.org/10.1016/j.neuron.2015.04.024.
Cohen, L. B., & Salzberg, B. M. (1978). Optical measurement of membrane potential. Reviews of Physiology, Biochemistry and Pharmacology, 83, 35-88.
Dubbeldam, J. L. (1998). Birds. In R. Nieuwenhuys, H. J. ten Donkelaar, & C. Nicholson (Eds.), The central nervous system of vertebrate, Vol. 3 (pp. 1525-1636). Springer-Verlag, Berlin.
Ennis, M., Puche, A. C., Holy, T., & Shipley, M. T. (2015). The olfactory system. In G. Paxinos (Ed.), The rat nervous system (4th ed., pp. 761-803). Elsevier Academic Press.
Glover, J. C., Sato, K., & Momose-Sato, Y. (2008). Using voltage-sensitive dye recording to image the functional development of neuronal circuits in vertebrate embryos. Developmental Neurobiology, 68, 804-816. https://doi.org/10.1002/dneu.20629.
Grinvald, A., Frostig, R. D., Lieke, E., & Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiological Reviews, 68, 1285-1366. https://doi.org/10.1152/physrev.1988.68.4.1285.
Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49-92. https://doi.org/10.1002/jmor.1050880104.
Hirao, A., Sugita, S., & Sugawara, K. (2000). Efferent and afferent connections and efferent pathway of olfactory bulb in the chicken (Gallus domesticus). Animal Science Journal, 71, J483-J490.
Hirota, A., Sato, K., Momose-Sato, Y., Sakai, T., & Kamino, K. (1995). A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. Journal of Neuroscience Methods, 56, 187-194. https://doi.org/10.1016/0165-0270(94)00123-X.
Jarvis, E. D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., Medina, L., Paxinos, G., Perkel, D. J., Shimizu, T., Striedter, G., Wild, J. M., Ball, G. F., Dugas-Ford, J., Durand, S. E., Hough, G. E., Husband, S., Kubikova, L., Lee, D. W., … Butler, A. B. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews. Neuroscience, 6, 151-159. https://doi.org/10.1038/nrn1606.
Jones, R. B., & Roper, T. J. (1997). Olfaction in the domestic fowl: A critical review. Physiology & Behavior, 62, 1009-1018. https://doi.org/10.1016/S0031-9384(97)00207-2.
Kamino, K. (1991). Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiological Reviews, 71, 53-91. https://doi.org/10.1152/physrev.1991.71.1.53.
Kamino, K., Hirota, H., & Fujii, S. (1981). Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature, 290, 595-597. https://doi.org/10.1038/290595a0.
Kuenzel, W. J., & Masson, M. (1988). A stereotaxic atlas of the brain of the chick (Gallus domesticus) (pp. 1-166). The Johns Hopkins University Press.
Marino, L. (2017). Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. Animal Cognition, 20, 127-147. https://doi.org/10.1007/s10071-016-1064-4.
Mendoza, A. S., Breipohl, W., & Miragall, F. (1982). Cell migration from the chick olfactory placode: A light and electron microscopic study. Journal of Embryology and Experimental Morphology, 69, 47-59.
Momose-Sato, Y., Honda, Y., Sasaki, H., & Sato, K. (2004). Optical mapping of the functional organization of the rat trigeminal nucleus: Spatial and temporal dynamics of sensory information transfer during embryogenesis. The Journal of Neuroscience, 24, 1366-1376. https://doi.org/10.1523/JNEUROSCI.4457-03.2004.
Momose-Sato, Y., & Sato, K. (2006). Optical recording of vagal pathway formation in the embryonic brainstem. Autonomic Neuroscience: Basic & Clinical, 126-127, 39-49. https://doi.org/10.1016/j.autneu.2006.02.013.
Momose-Sato, Y., & Sato, K. (2013). Large-scale synchronized activity in the embryonic brainstem and spinal cord. Frontiers in Cellular Neuroscience, 7, 36. 1-15.
Momose-Sato, Y., Sato, K., & Kamino, K. (2001). Optical approaches to embryonic development of neural function in the brainstem. Progress in Neurobiology, 63, 151-197. https://doi.org/10.1016/S0301-0082(00)00023-X.
Momose-Sato, Y., Sato, K., & Kamino, K. (2015). Monitoring population membrane potential signals during development of the vertebrate nervous system. In M. Canepari, D. Zecevic, & O. Bernus (Eds.), Membrane potential imaging in the nervous system and heart (pp. 213-242). Springer.
Momose-Sato, Y., Sato, K., Sakai, T., Hirota, A., Matsutani, K., & Kamino, K. (1995). Evaluation of optimal voltage-sensitive dyes for optical monitoring of embryonic neural activity. The Journal of Membrane Biology, 144, 167-176.
Obaid, A. L., Orkand, R. K., Gainer, H., & Salzberg, B. M. (1985). Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis. The Journal of General Physiology, 85, 481-489. https://doi.org/10.1085/jgp.85.4.481.
Orbach, H. S., Cohen, L. B., & Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. The Journal of Neuroscience, 5, 1886-1895. https://doi.org/10.1523/JNEUROSCI.05-07-01886.1985.
Reiner, A., & Karten, H. J. (1985). Comparison of olfactory bulb projections in pigeons and turtles. Brain, Behavior and Evolution, 27, 11-27. https://doi.org/10.1159/000118717.
Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, G. F., Durand, S., Gütürkün, O., Lee, D. W., Mello, C. V., Powers, A., White, S. A., Hough, G., … Jarvis, E. D. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473, 377-414. https://doi.org/10.1002/cne.20118.
Rieke, G. K., & Wenzel, B. M. (1978). Forebrain projections of the pigeon olfactory bulb. Journal of Morphology, 158, 41-56. https://doi.org/10.1002/jmor.1051580105.
Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., & Wang, C. H. (1977). Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential. The Journal of Membrane Biology, 33, 141-183. https://doi.org/10.1007/BF01869514.
Sakai, T., Komuro, H., Katoh, Y., Sasaki, H., Momose-Sato, Y., & Kamino, K. (1991). Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles. Journal of Physiology (London), 439, 361-381. https://doi.org/10.1113/jphysiol.1991.sp018671.
Saleh, T. M., & Cechetto, D. F. (1994). Neurotransmitters in the parabrachial nucleus mediating visceral input to the thalamus in rats. The American Journal of Physiology, 266, R1287-R1296. https://doi.org/10.1152/ajpregu.1994.266.4.R1287.
Salzberg, B. M. (1983). Optical recording of electrical activity in neurons using molecular probes. In J. L. Barker & J. F. McKelvy (Eds.), Current methods in cellular neurobiology (Vol. 3). Electrophysiological techniques. (pp. 139-187). Wiley.
Salzberg, B. M., Obaid, A. L., Senseman, D. M., & Gainer, H. (1983). Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature, 306, 36-40. https://doi.org/10.1038/306036a0.
Sato, K., Hayashi, S., Inaji, M., & Momose-Sato, Y. (2016). Oscillations in the embryonic chick olfactory bulb: Initial expression and development revealed by optical imaging with a voltage-sensitive dye. The European Journal of Neuroscience, 43, 1111-1121. https://doi.org/10.1111/ejn.13189.
Sato, K., Kinoshita, M., & Momose-Sato, Y. (2007). Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway. Neuroscience, 144, 1334-1346. https://doi.org/10.1016/j.neuroscience.2006.11.019.
Sato, K., Miyakawa, N., & Momose-Sato, Y. (2004). Optical survey of neural circuit formation in the embryonic chick vagal pathway. The European Journal of Neuroscience, 19, 1217-1225. https://doi.org/10.1111/j.1460-9568.2004.03218.x.
Sato, K., & Momose-Sato, Y. (2017). Functiogenesis of the embryonic central nervous system revealed by optical recording with a voltage-sensitive dye. The Journal of Physiological Sciences, 67, 107-119. https://doi.org/10.1007/s12576-016-0482-z.
Sato, K., & Momose-Sato, Y. (2021). Optical detection of neuronal activity in the olfactory-limbic network of the embryonic chick forebrain. The Journal of Physiological Sciences, 71(suppl. 1), S148.
Sokolowski, K., & Corbin, J. G. (2012). Wired for behaviors: From development to function of innate limbic system circuitry. Frontiers in Molecular Neuroscience, 5, 55. 1-15.
Wu, J.-Y., & Cohen, L. B. (1993). Fast multisite optical measurements of membrane potential. In W. T. Mason (Ed.), Fluorescent and luminescent probes for biological activity (pp. 389-404). Academic Press.
Wu, J.-Y., Lam, Y.-W., Falk, C. X., Cohen, L. B., Fang, J., Loew, L., Prechtl, J. C., Kleinfeld, D., & Tsau, Y. (1998). Voltage-sensitive dyes for monitoring multineuronal activity in the intact central nervous system. The Histochemical Journal, 30, 169-187. https://doi.org/10.1023/A:1003295319615.
فهرسة مساهمة: Keywords: chick embryo; forebrain; olfactory nerve; optical recording; voltage-sensitive dye
المشرفين على المادة: 0 (Receptors, N-Methyl-D-Aspartate)
تواريخ الأحداث: Date Created: 20220803 Date Completed: 20220916 Latest Revision: 20221004
رمز التحديث: 20240628
DOI: 10.1111/ejn.15788
PMID: 35920370
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.15788