دورية أكاديمية

Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters.

التفاصيل البيبلوغرافية
العنوان: Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters.
المؤلفون: Gillett AJ; Cavendish Laboratory, University of Cambridge, Cambridge, UK. ajg216@cam.ac.uk., Pershin A; Laboratory for Chemistry of Novel Materials, Université de Mons, Mons, Belgium.; Wigner Research Centre for Physics, Budapest, Hungary., Pandya R; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Feldmann S; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Sneyd AJ; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Alvertis AM; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Evans EW; Cavendish Laboratory, University of Cambridge, Cambridge, UK.; Department of Chemistry, Swansea University, Swansea, UK., Thomas TH; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Cui LS; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China., Drummond BH; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Scholes GD; Department of Chemistry, Princeton University, Princeton, NJ, USA., Olivier Y; Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium., Rao A; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Friend RH; Cavendish Laboratory, University of Cambridge, Cambridge, UK., Beljonne D; Laboratory for Chemistry of Novel Materials, Université de Mons, Mons, Belgium. david.beljonne@umons.ac.be.
المصدر: Nature materials [Nat Mater] 2022 Oct; Vol. 21 (10), pp. 1150-1157. Date of Electronic Publication: 2022 Aug 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002]-
مواضيع طبية MeSH: Semiconductors*, Fluorescence
مستخلص: Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012). (PMID: 10.1038/nature11687)
Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photon. 8, 326–332 (2014).
Lin, T.-A. et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Adv. Mater. 28, 6976–6983 (2016). (PMID: 10.1002/adma.201601675)
Czerwieniec, R., Yu, J. & Yersin, H. Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg. Chem. 50, 8293–8301 (2011). (PMID: 10.1021/ic200811a)
Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013). (PMID: 10.1002/adma.201300753)
Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018). (PMID: 10.1038/natrevmats.2018.20)
Wu, T.-L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photon. 12, 235–240 (2018).
Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016). (PMID: 10.1038/ncomms13680)
Gibson, J., Monkman, A. P. & Penfold, T. J. The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. ChemPhysChem 17, 2956–2961 (2016). (PMID: 10.1002/cphc.201600662)
Noda, H. et al. Critical role of intermediate electronic states for spin–flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nat. Mater. 18, 1084–1090 (2019).
Drummond, B. H. et al. Electron spin resonance resolves intermediate triplet states in delayed fluorescence. Nat. Commun. 12, 4532 (2021). (PMID: 10.1038/s41467-021-24612-9)
dos Santos, P. L., Ward, J. S., Bryce, M. R. & Monkman, A. P. Using guest–host interactions to optimize the efficiency of TADF OLEDs. J. Phys. Chem. Lett. 7, 3341–3346 (2016). (PMID: 10.1021/acs.jpclett.6b01542)
Deng, C., Zhang, L., Wang, D., Tsuboi, T. & Zhang, Q. Exciton‐ and polaron‐induced reversible dipole reorientation in amorphous organic semiconductor films. Adv. Opt. Mater. 7, 1801644 (2019). (PMID: 10.1002/adom.201801644)
Méhes, G., Goushi, K., Potscavage, W. J. & Adachi, C. Influence of host matrix on thermally-activated delayed fluorescence: effects on emission lifetime, photoluminescence quantum yield, and device performance. Org. Electron. 15, 2027–2037 (2014). (PMID: 10.1016/j.orgel.2014.05.027)
Olivier, Y. et al. Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence. Phys. Rev. Mater. 1, 075602 (2017). (PMID: 10.1103/PhysRevMaterials.1.075602)
Yersin, H., Mataranga-Popa, L., Czerwieniec, R. & Dovbii, Y. Design of a new mechanism beyond thermally activated delayed fluorescence toward fourth generation organic light emitting diodes. Chem. Mater. 31, 6110–6116 (2019). (PMID: 10.1021/acs.chemmater.9b01168)
Hosokai, T. et al. Solvent-dependent investigation of carbazole benzonitrile derivatives: does the 3 LE− 1 CT energy gap facilitate thermally activated delayed fluorescence? J. Photonics Energy 8, 032102 (2018). (PMID: 10.1117/1.JPE.8.032102)
Han, C., Zhang, Z., Ding, D. & Xu, H. Dipole–dipole interaction management for efficient blue thermally activated delayed fluorescence diodes. Chem 4, 2154–2167 (2018).
Parusel, A. Semiempirical studies of solvent effects on the intramolecular charge transfer of the fluorescence probe PRODAN. J. Chem. Soc. Faraday Trans. 94, 2923–2927 (1998). (PMID: 10.1039/a804841j)
Northey, T., Stacey, J. & Penfold, T. J. The role of solid state solvation on the charge transfer state of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 5, 11001–11009 (2017). (PMID: 10.1039/C7TC04099G)
Cui, L.-S. et al. Fast spin–flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photon. 14, 636–642 (2020).
Tang, X. et al. Highly efficient luminescence from space-confined charge-transfer emitters. Nat. Mater. 19, 1332–1338 (2020). (PMID: 10.1038/s41563-020-0710-z)
Kuang, Z. et al. Conformational relaxation and thermally activated delayed fluorescence in anthraquinone-based intramolecular charge-transfer compound. J. Phys. Chem. C 122, 3727–3737 (2018). (PMID: 10.1021/acs.jpcc.7b11411)
Delor, M. et al. Resolving and controlling photoinduced ultrafast solvation in the solid state. J. Phys. Chem. Lett. 8, 4183–4190 (2017). (PMID: 10.1021/acs.jpclett.7b01689)
Cotts, B. L. et al. Tuning thermally activated delayed fluorescence emitter photophysics through solvation in the solid state. ACS Energy Lett. 2, 1526–1533 (2017). (PMID: 10.1021/acsenergylett.7b00268)
Wang, H. et al. Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs. Adv. Mater. 26, 5198–5204 (2014). (PMID: 10.1002/adma.201401393)
Kaji, H. et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 6, 8476 (2015). (PMID: 10.1038/ncomms9476)
Noguchi, Y. et al. Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 111, 114508 (2012). (PMID: 10.1063/1.4724349)
Ritzoulis, G., Papadopoulos, N. & Jannakoudakis, D. Densities, viscosities, and dielectric constants of acetonitrile + toluene at 15, 25, and 35 °C. J. Chem. Eng. Data 31, 146–148 (1986). (PMID: 10.1021/je00044a004)
Yu, S., Hing, P. & Hu, X. Dielectric properties of polystyrene–aluminum-nitride composites. J. Appl. Phys. 88, 398–404 (2000). (PMID: 10.1063/1.373672)
Skuodis, E. et al. Aggregation, thermal annealing, and hosting effects on performances of an acridan-based TADF emitter. Org. Electron. 63, 29–40 (2018). (PMID: 10.1016/j.orgel.2018.09.002)
Takeuchi, S. et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008). (PMID: 10.1126/science.1160902)
Iwamura, M., Watanabe, H., Ishii, K., Takeuchi, S. & Tahara, T. Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. J. Am. Chem. Soc. 133, 7728–7736 (2011). (PMID: 10.1021/ja108645x)
Iwamura, M., Takeuchi, S. & Tahara, T. Ultrafast excited-state dynamics of copper(I) complexes. Acc. Chem. Res. 48, 782–791 (2015). (PMID: 10.1021/ar500353h)
Karunakaran, V. & Das, S. Direct observation of cascade of photoinduced ultrafast intramolecular charge transfer dynamics in diphenyl acetylene derivatives: via solvation and intramolecular relaxation. J. Phys. Chem. B 120, 7016–7023 (2016). (PMID: 10.1021/acs.jpcb.6b05264)
Choi, J., Ahn, D.-S., Oang, K. Y., Cho, D. W. & Ihee, H. Charge transfer-induced torsional dynamics in the excited state of 2,6-bis(diphenylamino)anthraquinone. J. Phys. Chem. C 121, 24317–24323 (2017). (PMID: 10.1021/acs.jpcc.7b07553)
Petrozza, A., Laquai, F., Howard, I. A., Kim, J.-S. & Friend, R. H. Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer. Phys. Rev. B 81, 205421 (2010). (PMID: 10.1103/PhysRevB.81.205421)
Hosokai, T. et al. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Sci. Adv. 3, e1603282 (2017). (PMID: 10.1126/sciadv.1603282)
Liebel, M. & Kukura, P. Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain. J. Phys. Chem. Lett. 4, 1358–1364 (2013). (PMID: 10.1021/jz4004203)
Sasaki, S., Drummen, G. P. C. & Konishi, G. I. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C 4, 2731–2743 (2016). (PMID: 10.1039/C5TC03933A)
Santos, P. L. et al. Engineering the singlet–triplet energy splitting in a TADF molecule. J. Mater. Chem. C 4, 3815–3824 (2016). (PMID: 10.1039/C5TC03849A)
Aizawa, N., Harabuchi, Y., Maeda, S. & Pu, Y.-J. Kinetic prediction of reverse intersystem crossing in organic donor–acceptor molecules. Nat. Commun. 11, 3909 (2020). (PMID: 10.1038/s41467-020-17777-2)
Niu, Y., Peng, Q. & Shuai, Z. Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci. China Ser. B 51, 1153–1158 (2008).
Warshel, A. & Parson, W. W. Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers. Annu. Rev. Phys. Chem. 42, 279–309 (1991). (PMID: 10.1146/annurev.pc.42.100191.001431)
Samanta, P. K., Kim, D., Coropceanu, V. & Brédas, J.-L. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states. J. Am. Chem. Soc. 139, 4042–4051 (2017). (PMID: 10.1021/jacs.6b12124)
de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997). (PMID: 10.1002/adma.19970090308)
Grimme, S., Brandenburg, J. G., Bannwarth, C. & Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 143, 054107 (2015). (PMID: 10.1063/1.4927476)
Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018). (PMID: 10.1002/wcms.1327)
Dhali, R., Phan Huu, D. K. A., Terenziani, F., Sissa, C. & Painelli, A. Thermally activated delayed fluorescence: a critical assessment of environmental effects on the singlet–triplet energy gap. J. Chem. Phys. 154, 134112 (2021). (PMID: 10.1063/5.0042058)
Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011). (PMID: 10.1007/s00249-011-0700-9)
Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995). (PMID: 10.1016/0010-4655(95)00042-E)
معلومات مُعتمدة: 758826 International ERC_ European Research Council; 670405 International ERC_ European Research Council
تواريخ الأحداث: Date Created: 20220804 Date Completed: 20220930 Latest Revision: 20230205
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7613666
DOI: 10.1038/s41563-022-01321-2
PMID: 35927434
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4660
DOI:10.1038/s41563-022-01321-2