دورية أكاديمية

Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field.

التفاصيل البيبلوغرافية
العنوان: Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field.
المؤلفون: Brazelton WJ; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., McGonigle JM; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA.; Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA., Motamedi S; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Pendleton HL; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Twing KI; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Miller BC; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Lowe WJ; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Hoffman AM; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Prator CA; School of Biological Sciences, University of Utahgrid.223827.e, Salt Lake City, Utah, USA., Chadwick GL; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA., Anderson RE; Department of Biology, Carleton College, Northfield, Minnesota, USA., Thomas E; Department of Biology, Carleton College, Northfield, Minnesota, USA., Butterfield DA; Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA., Aquino KA; Department of Earth Sciences, ETH Zurich, Zurich, Switzerland., Früh-Green GL; Department of Earth Sciences, ETH Zurich, Zurich, Switzerland., Schrenk MO; Department of Earth and Environmental Sciences, Michigan State Universitygrid.17088.36, East Lansing, Michigan, USA., Lang SQ; School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA.
المصدر: Applied and environmental microbiology [Appl Environ Microbiol] 2022 Sep 13; Vol. 88 (17), pp. e0092922. Date of Electronic Publication: 2022 Aug 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, American Society for Microbiology.
مواضيع طبية MeSH: Ecosystem* , Hydrothermal Vents*/microbiology, Archaea/genetics ; Archaea/metabolism ; Bacteria/genetics ; Bacteria/metabolism ; Formates/metabolism ; Hydrogen/metabolism ; Sulfates/metabolism
مستخلص: Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H 2 ), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota ) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H 2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H 2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H 2 ) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.
References: PLoS One. 2017 Oct 26;12(10):e0185056. (PMID: 29073143)
Nat Microbiol. 2018 Jul;3(7):836-843. (PMID: 29807988)
Microbiome. 2018 Dec 17;6(1):226. (PMID: 30558668)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
ISME J. 2015 Aug;9(8):1710-22. (PMID: 25615435)
Appl Environ Microbiol. 2013 Sep;79(17):5112-20. (PMID: 23793624)
Biochim Biophys Acta Bioenerg. 2018 Dec;1859(12):1302-1312. (PMID: 30463674)
Cell Mol Life Sci. 2003 Mar;60(3):474-94. (PMID: 12737308)
Astrobiology. 2006 Apr;6(2):364-76. (PMID: 16689652)
Appl Environ Microbiol. 2020 Apr 1;86(8):. (PMID: 32033949)
PeerJ. 2019 Jul 26;7:e7359. (PMID: 31388474)
Nat Commun. 2016 Apr 13;7:11257. (PMID: 27071849)
Bioinformatics. 2012 Dec 15;28(24):3211-7. (PMID: 23071270)
Front Microbiol. 2020 Jan 31;11:37. (PMID: 32082281)
Nat Commun. 2014 May 21;5:3900. (PMID: 24845058)
Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8. (PMID: 24293649)
mBio. 2011 Sep 01;2(4):. (PMID: 21791580)
Science. 2017 Apr 14;356(6334):155-159. (PMID: 28408597)
Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
Front Microbiol. 2015 Feb 19;6:44. (PMID: 25745416)
PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
Bioinformatics. 2016 Feb 15;32(4):605-7. (PMID: 26515820)
Geobiology. 2013 Mar;11(2):154-69. (PMID: 23346942)
Bioinformatics. 2014 May 1;30(9):1236-40. (PMID: 24451626)
Chem Rev. 2007 Feb;107(2):382-401. (PMID: 17253758)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Appl Environ Microbiol. 2006 Mar;72(3):2080-91. (PMID: 16517657)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Nat Commun. 2018 Nov 27;9(1):4999. (PMID: 30479325)
FEMS Microbiol Rev. 2000 Oct;24(4):335-66. (PMID: 10978542)
Front Microbiol. 2020 Jan 31;11:59. (PMID: 32082286)
Science. 2005 Mar 4;307(5714):1428-34. (PMID: 15746419)
Annu Rev Biochem. 2010;79:507-36. (PMID: 20235826)
Gigascience. 2020 Nov 19;9(11):. (PMID: 33215210)
Science. 2008 Feb 1;319(5863):604-7. (PMID: 18239121)
PLoS Biol. 2022 Jan 5;20(1):e3001508. (PMID: 34986141)
Curr Opin Chem Biol. 2004 Oct;8(5):454-61. (PMID: 15450486)
Bioinformatics. 2021 Sep 29;37(18):3029-3031. (PMID: 33734313)
Appl Environ Microbiol. 2006 Sep;72(9):6257-70. (PMID: 16957253)
ISME J. 2017 Nov;11(11):2584-2598. (PMID: 28731475)
Bioinformatics. 2012 Jul 15;28(14):1823-9. (PMID: 22556368)
Sci Rep. 2018 Jan 15;8(1):755. (PMID: 29335466)
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17666-17672. (PMID: 31427518)
Philos Trans A Math Phys Eng Sci. 2020 Feb 21;378(2165):20180429. (PMID: 31902336)
Front Microbiol. 2012 Jan 06;2:268. (PMID: 22232619)
Nat Methods. 2021 Apr;18(4):366-368. (PMID: 33828273)
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
Extremophiles. 2008 May;12(3):431-9. (PMID: 18317684)
Mikrobiologiia. 2010 Jan-Feb;79(1):103-13. (PMID: 20411667)
Archaea. 2011;2011:973848. (PMID: 21559116)
Methods. 2016 Jun 1;102:3-11. (PMID: 27012178)
Astrobiology. 2018 Jan;18(1):1-27. (PMID: 29252008)
Front Microbiol. 2018 Feb 06;9:102. (PMID: 29467733)
Front Microbiol. 2018 Jul 18;9:1605. (PMID: 30072971)
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15336-41. (PMID: 24003156)
Nat Microbiol. 2021 Jan;6(1):3-6. (PMID: 33349678)
Genome Res. 2017 May;27(5):824-834. (PMID: 28298430)
Front Microbiol. 2017 Feb 07;8:56. (PMID: 28223966)
Science. 1998 Sep 11;281(5383):1659-62. (PMID: 9733509)
Appl Environ Microbiol. 2021 Jan 4;87(2):. (PMID: 33127818)
Nat Rev Microbiol. 2008 Nov;6(11):805-14. (PMID: 18820700)
PeerJ. 2017 Mar 8;5:e3035. (PMID: 28289564)
ISME J. 2019 Feb;13(2):250-262. (PMID: 30194429)
Biochemistry. 2016 May 3;55(17):2423-6. (PMID: 27093333)
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641. (PMID: 30976793)
ISME J. 2021 Apr;15(4):1121-1135. (PMID: 33257813)
Nat Commun. 2020 Oct 9;11(1):5090. (PMID: 33037220)
PLoS One. 2010 Oct 21;5(10):e13530. (PMID: 20975831)
J Mol Biol. 2016 Feb 22;428(4):726-731. (PMID: 26585406)
Orig Life Evol Biosph. 2009 Apr;39(2):91-108. (PMID: 19034685)
Genome Res. 2015 Jul;25(7):1043-55. (PMID: 25977477)
Environ Microbiol. 2004 Oct;6(10):1086-95. (PMID: 15344934)
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1612-7. (PMID: 20080654)
Environ Microbiol. 2020 Jun;22(6):2329-2345. (PMID: 32249550)
Sci Rep. 2016 Sep 27;6:34212. (PMID: 27670643)
FEMS Microbiol Rev. 2013 Mar;37(2):182-203. (PMID: 22713092)
ISME J. 2020 Dec;14(12):3136-3148. (PMID: 32820229)
PeerJ. 2017 Jan 26;5:e2945. (PMID: 28149702)
BMC Bioinformatics. 2010 Mar 08;11:119. (PMID: 20211023)
J Bacteriol. 2013 Nov;195(22):5160-5. (PMID: 24039260)
Environ Microbiol. 2016 Dec;18(12):4523-4536. (PMID: 27501305)
Front Microbiol. 2018 Dec 18;9:3141. (PMID: 30619209)
Nat Biotechnol. 2018 Jul 6;36(7):566-569. (PMID: 29979655)
ISME J. 2021 Mar;15(3):818-832. (PMID: 33139872)
Bioinformatics. 2019 Nov 15;:. (PMID: 31730192)
Environ Microbiol Rep. 2019 Aug;11(4):538-547. (PMID: 30888727)
Syst Appl Microbiol. 2021 Apr;44(2):126175. (PMID: 33422701)
J Biol Inorg Chem. 2015 Mar;20(2):287-309. (PMID: 25476858)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Sci Total Environ. 2022 Aug 25;836:155492. (PMID: 35476949)
PeerJ. 2015 Oct 08;3:e1319. (PMID: 26500826)
Environ Microbiol. 2018 Aug;20(8):2686-2708. (PMID: 29521452)
Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
Front Microbiol. 2020 Jun 09;11:1031. (PMID: 32655506)
Nat Biotechnol. 2017 Aug 8;35(8):725-731. (PMID: 28787424)
Appl Environ Microbiol. 2020 May 19;86(11):. (PMID: 32220840)
Int J Syst Evol Microbiol. 2016 Nov;66(11):4464-4470. (PMID: 27499124)
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. (PMID: 29771380)
فهرسة مساهمة: Keywords: acetogenesis; formate; hydrogenase; hydrothermal; metagenomics; methanogenesis; serpentinization; sulfate reduction
المشرفين على المادة: 0 (Formates)
0 (Sulfates)
0YIW783RG1 (formic acid)
7YNJ3PO35Z (Hydrogen)
تواريخ الأحداث: Date Created: 20220811 Date Completed: 20220915 Latest Revision: 20240904
رمز التحديث: 20240904
مُعرف محوري في PubMed: PMC9469722
DOI: 10.1128/aem.00929-22
PMID: 35950875
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-5336
DOI:10.1128/aem.00929-22