دورية أكاديمية

Restructured membrane contacts rewire organelles for human cytomegalovirus infection.

التفاصيل البيبلوغرافية
العنوان: Restructured membrane contacts rewire organelles for human cytomegalovirus infection.
المؤلفون: Cook KC; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US., Tsopurashvili E; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US., Needham JM; Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US., Thompson SR; Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US., Cristea IM; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US. icristea@princeton.edu.
المصدر: Nature communications [Nat Commun] 2022 Aug 11; Vol. 13 (1), pp. 4720. Date of Electronic Publication: 2022 Aug 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Cytomegalovirus Infections* , Herpes Simplex* , Herpesviridae Infections*/metabolism , Viruses*, Cytomegalovirus/physiology ; Humans ; Organelles ; Peroxisomes/metabolism
مستخلص: Membrane contact sites (MCSs) link organelles to coordinate cellular functions across space and time. Although viruses remodel organelles for their replication cycles, MCSs remain largely unexplored during infections. Here, we design a targeted proteomics platform for measuring MCS proteins at all organelles simultaneously and define functional virus-driven MCS alterations by the ancient beta-herpesvirus human cytomegalovirus (HCMV). Integration with super-resolution microscopy and comparisons to herpes simplex virus (HSV-1), Influenza A, and beta-coronavirus HCoV-OC43 infections reveals time-sensitive contact regulation that allows switching anti- to pro-viral organelle functions. We uncover a stabilized mitochondria-ER encapsulation structure (MENC). As HCMV infection progresses, MENCs become the predominant mitochondria-ER contact phenotype and sequentially recruit the tethering partners VAP-B and PTPIP51, supporting virus production. However, premature ER-mitochondria tethering activates STING and interferon response, priming cells against infection. At peroxisomes, ACBD5-mediated ER contacts balance peroxisome proliferation versus membrane expansion, with ACBD5 impacting the titers of each virus tested.
(© 2022. The Author(s).)
References: Cook, K. C. & Cristea, I. M. Location is everything: protein translocations as a viral infection strategy. Curr. Opin. Chem. Biol. 48, 34–43 (2019). (PMID: 3033998710.1016/j.cbpa.2018.09.021)
Jean Beltran, P. M. et al. Exploring and Exploiting Proteome Organization during Viral Infection. J. Virol. 91, JVI.00268–17 (2017). (PMID: 10.1128/JVI.00268-17)
Tyl, M. D., Betsinger, C. N. & Cristea, I. M. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr. Opin. Virol. 52, 135–147 (2022). (PMID: 3492328210.1016/j.coviro.2021.11.016)
Jean Beltran, P. M. et al. A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection. Cell Syst. 3, 361–373.e6 (2016). (PMID: 27641956508315810.1016/j.cels.2016.08.012)
Zeltzer, S. et al. Virus control of trafficking from sorting endosomes. mBio 9, 1–18 (2018). (PMID: 10.1128/mBio.00683-18)
Choi, H. J. et al. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type i interferon immune responses. Nat. Commun. 9, 125 (2018).
Jean Beltran, P. M. & Cristea, I. M. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev. Proteom. 11, 697–711 (2014). (PMID: 10.1586/14789450.2014.971116)
Li, T., Chen, J. & Cristea, I. M. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14, 591–599 (2013). (PMID: 2423770410.1016/j.chom.2013.10.007)
Murray, L. A., Sheng, X. & Cristea, I. M. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat. Commun. 9, 4967 (2018).
Hagen, C. et al. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell 163, 1692–1701 (2015). (PMID: 26687357470171210.1016/j.cell.2015.11.029)
Alwine, J. C. The Human Cytomegalovirus Assembly Compartment: A Masterpiece of Viral Manipulation of Cellular Processes That Facilitates Assembly and Egress. PLoS Pathog. 8, 1–4 (2012). (PMID: 10.1371/journal.ppat.1002878)
Zhang, H. et al. The human cytomegalovirus nonstructural glycoprotein ul148 reorganizes the endoplasmic reticulum. mBio 10, 1–23 (2019). (PMID: 10.1128/mBio.02110-19)
Das, S. & Pellett, P. E. P. Spatial Relationships between Markers for Secretory and Endosomal Machinery in Human Cytomegalovirus-Infected Cells versus Those in Uninfected Cells. J. Virol. 85, 5864–5879 (2011). (PMID: 21471245312632710.1128/JVI.00155-11)
Yang, B. et al. Human Cytomegalovirus Hijacks WD Repeat Domain 11 for Virion Assembly Compartment Formation and Virion Morphogenesis. J. Virol. 96, e0182721 (2022).
Procter, D. J. et al. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Dev. Cell 45, 83–100.e7 (2018). (PMID: 29634939589677810.1016/j.devcel.2018.03.010)
Combs, J. A. et al. Human Cytomegalovirus Alters Host Cell Mitochondrial Function during Acute Infection. J. Virol. 94, 1–19 (2019).
Jean Beltran, P. M. et al. Infection-Induced Peroxisome Biogenesis Is a Metabolic Strategy for Herpesvirus Replication. Cell Host and Microbe. 24, 526–541 (2018).
Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, 1165–1175 (2006). (PMID: 10.1371/journal.ppat.0020132)
Federspiel, J. D. et al. Mitochondria and Peroxisome Remodeling across Cytomegalovirus Infection Time Viewed through the Lens of Inter-ViSTA. Cell Rep. 32, 107943 (2020). (PMID: 32726614848919510.1016/j.celrep.2020.107943)
Sheng, X. & Cristea, I. M. The antiviral sirtuin 3 bridges protein acetylation to mitochondrial integrity and metabolism during human cytomegalovirus infection. PLoS Pathog 17, e1009506 (2021).
Hollinshead, M. et al. Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J. 31, 4204–4220 (2012). (PMID: 22990238349272710.1038/emboj.2012.262)
Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism. PLOS Pathog. 7, e1002124 (2011). (PMID: 21779165313646010.1371/journal.ppat.1002124)
Yoshizumi, T. et al. Influenza a virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun. 5, 6–10 (2014). (PMID: 10.1038/ncomms5713)
Bhagwat, A. R. et al. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat. Commun. 11, 1–14 (2020). (PMID: 10.1038/s41467-019-13838-3)
Ampomah, P. B. & Lim, L. H. K. Influenza A virus-induced apoptosis and virus propagation. Apoptosis. 25, 1–11 (2020).
Knoops, K. et al. SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biol. 6, e226 (2008). (PMID: 18798692253566310.1371/journal.pbio.0060226)
Klein, S. et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11, 1–10 (2020). (PMID: 10.1038/s41467-020-19619-7)
Cortese, M. et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 28, 853–866.e5 (2020). (PMID: 33245857767092510.1016/j.chom.2020.11.003)
Knoblach, B., Ishida, R., Hobman, T. C. & Rachubinski, R. A. Peroxisomes exhibit compromised structure and matrix protein content in SARS-CoV-2-infected cells. Mol. Biol. Cell 32, 1273–1282 (2021). (PMID: 34010015835155310.1091/mbc.E21-02-0074)
Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. Developmental Cell 39, 395–409 (2016). (PMID: 2787568410.1016/j.devcel.2016.10.022)
Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1–11 (2019). (PMID: 10.1038/s41467-019-09253-3)
Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: The importance of ER membrane contact sites. Science 361, eaan5835 (2018).
Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020). (PMID: 3173271710.1038/s41580-019-0180-9)
Audano, M. et al. “The Loss of Golden Touch”: Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells. 9, 2519 (2020).
Kim, S., Wong, Y. C., Gao, F. & Krainc, D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat. Commun. 12, 1807 (2021).
Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017). (PMID: 29097544581899910.1126/science.aan6009)
Gil-Hernández, A. et al. Relevance of Membrane Contact Sites in Cancer Progression. Front. Cell Developmental Biol. 8, 1744 (2021). (PMID: 10.3389/fcell.2020.622215)
Stoica, R. et al. ALS / FTD -associated FUS activates GSK -3β to disrupt the VAPB – PTPIP 51 interaction and ER –mitochondria associations. EMBO Rep. 17, 1326–1342 (2016). (PMID: 27418313500755910.15252/embr.201541726)
Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl Acad. Sci. USA 110, 7916–7921 (2013). (PMID: 23620518365145510.1073/pnas.1300677110)
Cianciola, N. L. et al. Adenovirus Modulates Toll-Like Receptor Signaling by Reprogramming ORP1L- VAP Protein Contacts for Cholesterol Transport from Endosomes to the. J. Virol. 91, 1–23 (2017). (PMID: 10.1128/JVI.01904-16)
Bhuvanendran, S. et al. Superresolution Imaging of Human Cytomegalovirus vMIA Localization in Sub-Mitochondrial Compartments. Viruses 6, 1612–1636 (2014). (PMID: 24721787401471310.3390/v6041612)
Laufman, O., Perrino, J. & Andino, R. Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication. Cell 178, 275–289.e16 (2019). (PMID: 31204099707733010.1016/j.cell.2019.05.030)
Zhang, A., Hildreth, R. L. & Colberg-Poley, A. M. Human Cytomegalovirus Inhibits Apoptosis by Proteasome-Mediated Degradation of Bax at Endoplasmic Reticulum-Mitochondrion Contacts. J. Virol. 87, 5657–5668 (2013). (PMID: 23487455364813710.1128/JVI.00145-13)
Dudás, E. F., Huynen, M. A., Lesk, A. M. & Pastore, A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J. Biol. Chem. 296, 100421 (2021).
Wang, H. & Tai, A. W. Nir2 Is an Effector of VAPs Necessary for Efficient Hepatitis C Virus Replication and Phosphatidylinositol 4-Phosphate Enrichment at the Viral Replication Organelle. J. Virol. 93, e00742-19 (2019).
Kwak, C. et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA 117, 12109–12120 (2020). (PMID: 32414919727573710.1073/pnas.1916584117)
Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci USA 117, 12143–12154 (2020).
Vallese, F. et al. An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat. Commun. 11, 1–15 (2020). (PMID: 10.1038/s41467-020-19892-6)
King, C., Sengupta, P., Seo, A. Y. & Lippincott-Schwartz, J. ER membranes exhibit phase behavior at sites of organelle contact. Proc. Natl Acad. Sci. USA 117, 7225–7235 (2020). (PMID: 32179693713228610.1073/pnas.1910854117)
Valm, A. M. et al. Applying Systems-level Spectral Imaging and Analysis to Reveal the Organelle Interactome. Nature 546, 162–167 (2017). (PMID: 28538724553696710.1038/nature22369)
Benedetti, L. et al. Optimized vivid-derived magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife 9, 1–49 (2020). (PMID: 10.7554/eLife.63230)
Di Mattia, T. et al. FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. EMBO J. 39, e104369 (2020). (PMID: 33124732770545010.15252/embj.2019104369)
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 11, 1475–1488 (2012). (PMID: 10.1074/mcp.O112.020131)
Uzozie, A. C. & Aebersold, R. Advancing translational research and precision medicine with targeted proteomics. J. Proteom. 189, 1–10 (2018). (PMID: 10.1016/j.jprot.2018.02.021)
Xia, S. et al. Long Term Culture of Human Kidney Proximal Tubule Epithelial Cells Maintains Lineage Functions and Serves as an Ex vivo Model for Coronavirus Associated Kidney Injury. Virol. Sin. 35, 311–320 (2020). (PMID: 32602046732237910.1007/s12250-020-00253-y)
Gleaves, C. A., Wilson, D. J., Wold, A. D. & Smith, T. F. Detection and serotyping of herpes simplex virus in MRC-5 cells by use of centrifugation and monoclonal antibodies 16 h postinoculation. J. Clin. Microbiol. 21, 29 (1985). (PMID: 298190127157410.1128/jcm.21.1.29-32.1985)
Cook, K. C., Moreno, J. A., Jean Beltran, P. M. & Cristea, I. M. Peroxisome Plasticity at the Virus–Host Interface. Trends Microbiol. 27, 906–914 (2019). (PMID: 31331665685744710.1016/j.tim.2019.06.006)
Hua, R. et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J. Cell Biol. 216, 367–377 (2017). (PMID: 28108526529478710.1083/jcb.201608128)
Costello, J. L. et al. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J. Cell Biol. 216, 331–342 (2017). (PMID: 28108524529478510.1083/jcb.201607055)
Eden, E. R., White, I. J., Tsapara, A. & Futter, C. E. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat. Cell Biol. 12, 267–272 (2010). (PMID: 2011892210.1038/ncb2026)
Fairley, J. A., Baille, J., Bain, M. & Sinclair, J. H. Human cytomegalovirus infection inhibits epidermal growth factor (EGF) signalling by targeting EGF receptors. J. Gen. Virol. 83, 2803–2810 (2002). (PMID: 1238881710.1099/0022-1317-83-11-2803)
Rak, M. A. et al. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J.Virol. 92, e00919-18 (2018).
Collins-McMillen, D. et al. Human Cytomegalovirus Utilizes a Nontraditional Signal Transducer and Activator of Transcription 1 Activation Cascade via Signaling through Epidermal Growth Factor Receptor and Integrins To Efficiently Promote the Motility, Differentiation, and Polarization of Infected Monocytes. J Virol 91, e00622-17 (2017).
Mahmud, J., Miller, M. J., Altman, A. M. & Chan, G. C. Human Cytomegalovirus Glycoprotein-Initiated Signaling Mediates the Aberrant Activation of Akt. J Virol 94, e00167-20 (2020).
Buehler, J. et al. Opposing Regulation of the EGF Receptor: A Molecular Switch Controlling Cytomegalovirus Latency and Replication. PLoS Pathog 12, e1005655 (2016).
Kim, J. H., Collins-McMillen, D., Buehler, J. C., Goodrum, F. D. & Yurochko, A. D. Human Cytomegalovirus Requires Epidermal Growth Factor Receptor Signaling To Enter and Initiate the Early Steps in the Establishment of Latency in CD34 + Human Progenitor Cells. J. Virol. 91, e01206-16 (2017).
Fulkerson, H. L. et al. HCMV-induced signaling through gB-EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc. Natl Acad. Sci. USA 117, 19507–19516 (2020). (PMID: 32723814743103410.1073/pnas.2003549117)
Höglinger, D. et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10, 1–14 (2019). (PMID: 10.1038/s41467-019-12152-2)
Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009). (PMID: 19564404271295810.1083/jcb.200811005)
Meneses-Salas, E. et al. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell. Mol. Life Sci. 77, 2839–2857 (2020). (PMID: 3166446110.1007/s00018-019-03330-y)
Sharon-Friling, R. & Shenk, T. Human cytomegalovirus pUL37x1-induced calcium flux activates PKCα, inducing altered cell shape and accumulation of cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 111, E1140–E1148 (2014). (PMID: 24616524397054110.1073/pnas.1402515111)
Musiol, A. et al. Annexin A6-balanced late endosomal cholesterol controls influenza a replication and propagation. mBio 4, e00608-13 (2013).
Gudleski-O’Regan, N., Greco, T. M., Cristea, I. M. & Shenk, T. Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe 12, 86–96 (2012). (PMID: 22817990340591610.1016/j.chom.2012.05.012)
Sharon-Friling, R., Goodhouse, J., Colberg-Poley, A. M. & Shenk, T. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc. Natl Acad. Sci. USA 103, 19117–19122 (2006). (PMID: 17135350174818510.1073/pnas.0609353103)
Zahn, K. E., Tchesnokov, E. P., Götte, M. & Doublié, S. Phosphonoformic Acid Inhibits Viral Replication by Trapping the Closed Form of the DNA Polymerase. J. Biol. Chem. 286, 25246 (2011). (PMID: 21566148313709510.1074/jbc.M111.248864)
Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science (1979) 334, 358–362 (2011).
Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e201911122 (2020).
Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016). (PMID: 27798601565604410.1038/nature20555)
De vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012). (PMID: 2213136910.1093/hmg/ddr559)
Huang, X., Jiang, C., Yu, L. & Yang, A. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites. Front. Cell Developmental Biol. 8, 195 (2020). (PMID: 10.3389/fcell.2020.00195)
Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006). (PMID: 16982799206438310.1083/jcb.200604016)
Gomez-Suaga, P. et al. The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy. Curr. Biol. 27, 371–385 (2017). (PMID: 28132811530090510.1016/j.cub.2016.12.038)
Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science (1979) 347, aaa2630-1–aaa2630-14 (2015).
Sausen, D., Reed, K., Bhutta, M., Gallo, E. & Borenstein, R. Evasion of the Host Immune Response by Betaherpesviruses. Int J. Mol. Sci. 22, 7503 (2021). (PMID: 34299120830645510.3390/ijms22147503)
Albright, E. R., Mickelson, C. K. & Kalejta, R. F. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. mBio 12, 1–19 (2021). (PMID: 10.1128/mBio.02267-21)
Fu, Y. Z. et al. Human Cytomegalovirus Tegument Protein UL82 Inhibits STING-Mediated Signaling to Evade Antiviral Immunity. Cell Host Microbe 21, 231–243 (2017). (PMID: 2813283810.1016/j.chom.2017.01.001)
Fabits, M. et al. The Cytomegalovirus Tegument Protein UL35 Antagonizes Pattern Recognition Receptor-Mediated Type I IFN Transcription. Microorganisms 8, 790 (2020).
Ren, Y. et al. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat. Microbiol. 7, 1041–1053 (2022).
Adamson, C. S. & Nevels, M. M. Bright and early: Inhibiting human cytomegalovirus by targeting major immediate-early gene expression or protein function. Viruses 12, E110 (2020).
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type i interferon-dependent innate immunity. Nature 461, 788–792 (2009). (PMID: 19776740466415410.1038/nature08476)
Zevini, A., Olagnier, D. & Hiscott, J. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol. 38, 194–205 (2017). (PMID: 28073693532913810.1016/j.it.2016.12.004)
Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009). (PMID: 19926846279156310.1073/pnas.0911267106)
Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018). (PMID: 2997372310.1038/s41586-018-0287-8)
Thomson, D. W. et al. Discovery of GSK8612, a Highly Selective and Potent TBK1 Inhibitor. ACS Medicinal Chem. Lett. 10, 780–785 (2019). (PMID: 10.1021/acsmedchemlett.9b00027)
Hong, Y. et al. STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci USA 118, e2108631118 (2021).
Magalhães, A. C. et al. Peroxisomes are platforms for cytomegalovirus’ evasion from the cellular immune response. Sci. Rep. 6, 26028 (2016). (PMID: 27181750486759610.1038/srep26028)
Dutta, S., Das, N. & Mukherjee, P. Picking up a Fight: Fine Tuning Mitochondrial Innate Immune Defenses Against RNA Viruses. Front. Microbiol. 11, 1990 (2020).
Khan, M., Syed, G. H., Kim, S. J. & Siddiqui, A. Mitochondrial dynamics and viral infections: A close nexus. Biochimica et. Biophysica Acta - Mol. Cell Res. 1853, 2822–2833 (2015). (PMID: 10.1016/j.bbamcr.2014.12.040)
Wang, R. et al. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy 17, 496–511 (2021). (PMID: 3201366910.1080/15548627.2020.1725375)
Betsinger, C. N. et al. The human cytomegalovirus protein pUL13 targets mitochondrial cristae architecture to increase cellular respiration during infection. Proc. Natl Acad. Sci. USA 118, 1–12 (2021). (PMID: 10.1073/pnas.2101675118)
Vallese, F., Barazzuol, L., Maso, L., Brini, M. & Calì, T. ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. in Advances in Experimental Medicine and Biology vol. 1131 719–746 (Springer New York LLC, 2020).
Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).
Hopfensperger, K. & Sautera, D. Decreased, deformed, defective-how HIV-1 vpu targets peroxisomes. mBio 11, e03395-19 (2020).
MacLean, B. et al. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010). (PMID: 20147306284499210.1093/bioinformatics/btq054)
Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020). (PMID: 2869134510.1002/mas.21540)
PJ, T. et al. A subcellular map of the human proteome. Science 356, aal3321 (2017).
Consortium, T. G. O. et al. Gene Ontology: tool for the unification of biology. Nat. Genet 25, 25 (2000). (PMID: 10.1038/75556)
Consortium, G. O. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021). (PMID: 10.1093/nar/gkaa1113)
Carbon, S. et al. AmiGO: online access to ontology and annotation data. BIOINFORMATICS 25, 288–289 (2009). (PMID: 1903327410.1093/bioinformatics/btn615)
Lum, K. K. et al. Interactome and Proteome Dynamics Uncover Immune Modulatory Associations of the Pathogen Sensing Factor cGAS. Cell Syst. 7, 627–642.e6 (2018). (PMID: 30471916631010210.1016/j.cels.2018.10.010)
Sharma, V. et al. Panorama public: A public repository for quantitative data sets processed in skyline. Mol. Cell. Proteom. 17, 1239–1244 (2018). (PMID: 10.1074/mcp.RA117.000543)
معلومات مُعتمدة: R01 AI174515 United States AI NIAID NIH HHS; T32 GM008111 United States GM NIGMS NIH HHS; T32 GM007388 United States GM NIGMS NIH HHS; F31 AI147637 United States AI NIAID NIH HHS
تواريخ الأحداث: Date Created: 20220811 Date Completed: 20220815 Latest Revision: 20231020
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9366835
DOI: 10.1038/s41467-022-32488-6
PMID: 35953480
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-32488-6