دورية أكاديمية

The Combined Effect of Heat and Osmotic Stress on Suberization of Arabidopsis Roots.

التفاصيل البيبلوغرافية
العنوان: The Combined Effect of Heat and Osmotic Stress on Suberization of Arabidopsis Roots.
المؤلفون: Leal AR; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157 Oeiras, Portugal.; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium., Belo J; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157 Oeiras, Portugal., Beeckman T; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium., Barros PM; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157 Oeiras, Portugal., Oliveira MM; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157 Oeiras, Portugal.
المصدر: Cells [Cells] 2022 Jul 29; Vol. 11 (15). Date of Electronic Publication: 2022 Jul 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101600052 Publication Model: Electronic Cited Medium: Internet ISSN: 2073-4409 (Electronic) Linking ISSN: 20734409 NLM ISO Abbreviation: Cells Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI
مواضيع طبية MeSH: Arabidopsis*/genetics , Arabidopsis*/metabolism, Cell Wall/metabolism ; Lipids/physiology ; Osmotic Pressure/physiology ; Plant Roots/metabolism ; Plants
مستخلص: The simultaneous occurrence of heat stress and drought is becoming more regular as a consequence of climate change, causing extensive agricultural losses. The application of either heat or osmotic stress increase cell-wall suberization in different tissues, which may play a role in improving plant resilience. In this work, we studied how the suberization process is affected by the combination of drought and heat stress by following the expression of suberin biosynthesis genes, cell-wall suberization and the chemical composition in Arabidopsis roots. The Arabidopsis plants used in this study were at the onset of secondary root development. At this point, one can observe a developmental gradient in the main root, with primary development closer to the root tip and secondary development, confirmed by the suberized phellem, closer to the shoot. Remarkably, we found a differential response depending on the root zone. The combination of drought and heat stress increased cell wall suberization in main root segments undergoing secondary development and in lateral roots (LRs), while the main root zone, at primary development stage, was not particularly affected. We also found differences in the overall chemical composition of the cell walls in both root zones in response to combined stress. The data gathered showed that, under combined drought and heat stress, Arabidopsis roots undergo differential cell wall remodeling depending on developmental stage, with modifications in the biosynthesis and/or assembly of major cell wall components.
References: Plant J. 2017 Jun;90(5):839-855. (PMID: 28370754)
J Exp Bot. 2013 Aug;64(11):3225-36. (PMID: 23918964)
Food Biophys. 2013 Mar;8(1):29-42. (PMID: 23487553)
J Plant Physiol. 2018 Aug;227:75-83. (PMID: 29449027)
Front Plant Sci. 2018 Nov 06;9:1612. (PMID: 30459794)
Carbohydr Polym. 2013 Mar 1;93(1):135-43. (PMID: 23465912)
Plant Physiol. 2009 Nov;151(3):1317-28. (PMID: 19759341)
Biopolymers. 2000;57(6):344-51. (PMID: 11054654)
J Plant Physiol. 2008 Jul 31;165(11):1168-80. (PMID: 18155804)
Metabolites. 2021 Oct 27;11(11):. (PMID: 34822393)
Curr Opin Plant Biol. 2018 Oct;45(Pt B):212-217. (PMID: 29673612)
Plant Direct. 2020 Nov 22;4(11):e00278. (PMID: 33251473)
Plant J. 2011 Jun;66(6):915-28. (PMID: 21535258)
Plant Signal Behav. 2007 May;2(3):135-8. (PMID: 19516981)
Ann Bot. 2016 Oct 1;118(4):667-674. (PMID: 27112163)
Ann Bot. 2019 Nov 27;124(6):1091-1107. (PMID: 31309230)
Front Plant Sci. 2014 Jun 30;5:303. (PMID: 25071791)
Plant Signal Behav. 2011 Aug;6(8):1104-10. (PMID: 21791979)
Cell. 2016 Jan 28;164(3):447-59. (PMID: 26777403)
Plant Physiol. 2013 Apr;161(4):1783-94. (PMID: 23447525)
Biomacromolecules. 2014 May 12;15(5):1806-13. (PMID: 24670155)
Plant Physiol. 2004 Apr;134(4):1683-96. (PMID: 15047901)
New Phytol. 2018 Jul;219(1):216-229. (PMID: 29611875)
Plant Physiol Biochem. 2021 Apr;161:1-11. (PMID: 33556720)
Planta. 2011 May;233(5):933-45. (PMID: 21249504)
Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61. (PMID: 16261190)
Front Plant Sci. 2012 Jun 06;3:121. (PMID: 22685449)
Protoplasma. 2012 Feb;249 Suppl 1:S59-67. (PMID: 22057629)
Front Plant Sci. 2016 Feb 23;7:180. (PMID: 26941754)
Front Plant Sci. 2020 Apr 22;11:379. (PMID: 32391026)
New Phytol. 2006;172(2):305-18. (PMID: 16995918)
Ann Bot. 2017 Mar 1;119(4):629-643. (PMID: 28065927)
Plant Cell. 2009 Apr;21(4):1141-54. (PMID: 19376932)
Science. 2021 Jan 8;371(6525):. (PMID: 33214288)
Plant Physiol. 2019 Oct;181(2):729-742. (PMID: 31399491)
J Exp Bot. 2000 Sep;51(350):1555-62. (PMID: 11006306)
Plant Physiol. 2013 Aug;162(4):1849-66. (PMID: 23753177)
Plant Signal Behav. 2011 Jan;6(1):59-65. (PMID: 21248477)
Front Plant Sci. 2012 Mar 12;3:45. (PMID: 22645587)
Nucleic Acids Res. 2001 May 1;29(9):e45. (PMID: 11328886)
Plant J. 2009 Nov;60(3):462-75. (PMID: 19619160)
J Exp Bot. 2009;60(15):4411-21. (PMID: 19752048)
Biotech Histochem. 1991;66(3):111-6. (PMID: 1716161)
Mol Plant. 2019 Nov 4;12(11):1447-1462. (PMID: 31491477)
Plant J. 2014 Oct;80(2):216-29. (PMID: 25060192)
Plants (Basel). 2020 Feb 06;9(2):. (PMID: 32041306)
Nat Cell Biol. 2009 Jul;11(7):797-806. (PMID: 19525940)
Plant J. 2022 May;110(3):899-915. (PMID: 35106861)
PLoS One. 2014 Aug 01;9(8):e103808. (PMID: 25084115)
Plant Cell Environ. 2012 Apr;35(4):702-18. (PMID: 21988660)
Phytochemistry. 2005 Nov;66(22):2643-58. (PMID: 16289150)
New Phytol. 2019 Jan;221(1):180-194. (PMID: 30055115)
J Exp Bot. 2012 Aug;63(13):4751-63. (PMID: 22791828)
Planta. 1999 Oct;209(4):537-42. (PMID: 10550636)
Trends Plant Sci. 2006 Jan;11(1):15-9. (PMID: 16359910)
Plant J. 2003 Aug;35(3):393-404. (PMID: 12887590)
Plants (Basel). 2020 Feb 06;9(2):. (PMID: 32041139)
Plant Physiol. 2004 Sep;136(1):2831-42. (PMID: 15347788)
Plant Cell Environ. 2020 Feb;43(2):344-357. (PMID: 31762057)
Plant Physiol. 2017 Jun;174(2):748-763. (PMID: 28381503)
Sci Rep. 2017 Feb 24;7:43215. (PMID: 28233854)
Plant Cell. 2014 Sep;26(9):3569-88. (PMID: 25217507)
J Exp Bot. 2016 Jan;67(2):543-52. (PMID: 26552883)
Plant Cell. 2007 Jan;19(1):351-68. (PMID: 17259262)
Front Plant Sci. 2015 Jan 07;5:771. (PMID: 25709610)
فهرسة مساهمة: Keywords: ATR-FTIR; abiotic stress; plant cell wall; secondary development; suberin
المشرفين على المادة: 0 (Lipids)
تواريخ الأحداث: Date Created: 20220812 Date Completed: 20220815 Latest Revision: 20221125
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9367520
DOI: 10.3390/cells11152341
PMID: 35954186
قاعدة البيانات: MEDLINE
الوصف
تدمد:2073-4409
DOI:10.3390/cells11152341