دورية أكاديمية

Mid-flight prey switching in the fringed-lipped bat (Trachops cirrhosus).

التفاصيل البيبلوغرافية
العنوان: Mid-flight prey switching in the fringed-lipped bat (Trachops cirrhosus).
المؤلفون: Kernan CE; Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, 03755, USA.; Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama., Yiambilis AN; Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.; College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA., Searcy ZE; Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA., Pulica RM; Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.; School of Graduate Studies, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA., Page RA; Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama., Caldwell MS; Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA. mcaldwel@gettysburg.edu.; Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama. mcaldwel@gettysburg.edu.
المصدر: Die Naturwissenschaften [Naturwissenschaften] 2022 Aug 15; Vol. 109 (5), pp. 43. Date of Electronic Publication: 2022 Aug 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0400767 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1904 (Electronic) Linking ISSN: 00281042 NLM ISO Abbreviation: Naturwissenschaften Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Chiroptera*, Animals ; Anura ; Cues ; Predatory Behavior
مستخلص: While foraging, eavesdropping predators home in on the signals of their prey. Many prey signal from aggregations, however, and predators already en route to attack one individual often encounter the signals of other prey. Few studies have examined whether eavesdropping predators update their foraging decisions by switching to target these more recently signaling prey. Switching could result in reduced localization errors and more current estimates of prey location. Conversely, assessing new cues while already in pursuit of another target might confuse or distract a predator. We tested whether fringed-lipped bats (Trachops cirrhosus) switch prey targets when presented with new cues mid-approach and examined how switching and the distance between simulated prey influence attack accuracy, latency, and prey capture success. During nearly 80% of attack flights, bats switched between túngara frog (Engystomops pustulosus) calls spaced 1 m apart, and switching resulted in lower localization errors. The switching rate was reduced, and the localization advantage disappeared for calls separated by 3 m. Regardless of whether bats switched targets, attacks were less accurate, took longer, and were less often successful when calls were spaced at larger distances, indicating a distraction effect. These results reveal that fringed-lipped bats attend to cues from non-targeted prey during attack flights and that the distance between prey alters the effectiveness of attacks, regardless of whether a bat switches targets. Understanding how eavesdropping predators integrate new signals from neighboring prey into their foraging decisions will lead to a fuller picture of the ways unintended receivers shape the evolution of signaling behavior.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aihara I, de Silva P et al (2016) Acoustic preference of frog-biting midges (Corethrella spp.) attacking túngara frogs in their natural habitat. Ethol 122(2):105–113. https://doi.org/10.1111/eth.12452. (PMID: 10.1111/eth.12452)
Akre KL, Farris HE et al (2011) Signal perception in frogs and bats and the evolution of mating signals. Sci 333(6043):751–752. https://doi.org/10.1126/science.1205623. (PMID: 10.1126/science.1205623)
Allen LC, Hristov NI et al (2021) Noise distracts foraging bats. Proc R Soc B 288(1944):20202689. (PMID: 10.1098/rspb.2020.2689)
Arlettaz R, Jones G et al (2001) Effect of acoustic clutter on prey detection by bats. Nature 414(6865):742–745. (PMID: 10.1038/414742a)
Baugh AT, Ryan MJ (2010) Mate choice in response to dynamic presentation of male advertisement signals in túngara frogs. Anim Behav 79(1):145–152. https://doi.org/10.1016/j.anbehav.2009.10.015. (PMID: 10.1016/j.anbehav.2009.10.015)
Bernal XE, Page RA et al (2007) Cues for eavesdroppers: do frog calls indicate prey density and quality? Am Nat 169(3):409–415. https://doi.org/10.1086/510729. (PMID: 10.1086/51072917230403)
Bulbert MW, Page RA et al (2015) Danger comes from all fronts: predator-dependent escape tactics of túngara frogs. PLoS ONE 10(4):e0120546. https://doi.org/10.1371/journal.pone.0120546. (PMID: 10.1371/journal.pone.0120546258747984398479)
Caldwell MS, Bee MA (2014) Spatial hearing in Cope’s gray treefrog: I. Open and closed loop experiments on sound localization in the presence and absence of noise. J Comp Physiol A 200(4):265–284. https://doi.org/10.1007/s00359-014-0882-6. (PMID: 10.1007/s00359-014-0882-6)
Dapper AL, Baugh AT, Ryan MJ (2011) The sounds of silence as an alarm cue in túngara frogs, Physalaemus pustulosus. Biotropica 43:380–385. https://doi.org/10.1111/j.1744-7429.2010.00707.x. (PMID: 10.1111/j.1744-7429.2010.00707.x)
Desutter-Grandcolas L (1998) Broad-frequency modulation in cricket (Orthoptera, Grylloidea) calling songs: two convergent cases and a functional hypothesis. Can J Zool 76(12):2148–2163. https://doi.org/10.1139/z98-152. (PMID: 10.1139/z98-152)
Dukas R (2004) Causes and consequences of limited attention. Brain Behav Evol 63(4):197–210. https://doi.org/10.1159/000076781. (PMID: 10.1159/00007678115084813)
Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fishes 9(2):173–190. https://doi.org/10.1007/BF00690861. (PMID: 10.1007/BF00690861)
Fletcher H (1940) Auditory patterns. Rev Mod Phys 12(1):47–65. https://doi.org/10.1103/RevModPhys.12.47. (PMID: 10.1103/RevModPhys.12.47)
Gomes DGE, Page RA et al (2016) Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353(6305):1277–1280. https://doi.org/10.1126/science.aaf7934. (PMID: 10.1126/science.aaf793427634533)
Grafe TU (1996) The function of call alternation in the African reed frog (Hyperolius marmoratus): precise call timing prevents auditory masking. Behav Ecol Sociobiol 38(3):149–158. https://doi.org/10.1007/s002650050227. (PMID: 10.1007/s002650050227)
Greenfield MD (2015) Signal interactions and interference in insect choruses: singing and listening in the social environment. J Comp Physiol A 201(1):143–154. https://doi.org/10.1007/s00359-014-0938-7. (PMID: 10.1007/s00359-014-0938-7)
Halfwerk W, Dixon MM et al (2014) Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. J Exp Biol 217(17):3038–3044. https://doi.org/10.1242/jeb.107482. (PMID: 10.1242/jeb.10748225165134)
Hemingway CT, Ryan MJ et al (2018) Cognitive constraints on optimal foraging in frog-eating bats. Anim Behav 143:43–50. https://doi.org/10.1016/j.anbehav.2018.07.007. (PMID: 10.1016/j.anbehav.2018.07.007)
Isvaran K, Ponkshe A (2013) How general is a female mating preference for clustered males in lekking species? A Meta-Analysis. Anim Behav 86(2):417–425. https://doi.org/10.1016/j.anbehav.2013.05.036. (PMID: 10.1016/j.anbehav.2013.05.036)
Jennions MD, Backwell PRY (1992) Chorus size influences on the anti-predator response of a Neotropical frog. Anim Behav 44(5):990–992. https://doi.org/10.1016/S0003-3472(05)80596-2. (PMID: 10.1016/S0003-3472(05)80596-2)
Jones PL, Hämsch F et al (2017) Foraging and roosting behaviour of the fringe-lipped bat, Trachops cirrhosus, on Barro Colorado Island Panamá. Acta Chiropt 19(2):337–346. https://doi.org/10.3161/15081109ACC2017.19.2.010. (PMID: 10.3161/15081109ACC2017.19.2.010)
Jones PL, Ryan MJ et al (2014) Population and seasonal variation in response to prey calls by an eavesdropping bat. Behav Ecol Sociobiol 68(4):605–615. https://doi.org/10.1007/s00265-013-1675-6. (PMID: 10.1007/s00265-013-1675-6)
Kalko EKV, Friemel D et al (1999) Roosting and foraging behavior of two Neotropical gleaning bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae). Biotropica 31(2):344–353. https://doi.org/10.1111/j.1744-7429.1999.tb00146.x. (PMID: 10.1111/j.1744-7429.1999.tb00146.x)
Klump GM, Gerhardt HC (1992) Mechanisms and function of call-timing in male-male interactions in frogs. In: McGregor PK (ed) Playback and Studies of Animal Communication. Springer, US, Boston, MA, pp 153–174. (PMID: 10.1007/978-1-4757-6203-7_11)
Konishi M (1973) How the owl tracks its prey: experiments with trained barn owls reveal how their acute sense of hearing enables them to catch prey in the dark. Am Sci 61(4):414–424.
Legett HD, Aihara I et al (2021) The dual benefits of synchronized mating signals in a Japanese treefrog: attracting mates and manipulating predators. Philos Trans R Soc B 376(1835):20200340. (PMID: 10.1098/rstb.2020.0340)
Legett HD, Hemingway CT et al (2020) Prey exploits the auditory illusions of eavesdropping predators. Am Nat 195(5):927–933. https://doi.org/10.1086/707719. (PMID: 10.1086/70771932364791)
Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide. Lawrence Erlbaum Assoc Inc.
Obrist MK, Fenton MB et al (1993) What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera. J Exp Biol 180(1):119–152. https://doi.org/10.1242/jeb.180.1.119. (PMID: 10.1242/jeb.180.1.1198371084)
Page RA, Jones PL (2016) Overcoming sensory uncertainty: factors affecting foraging decisions in frog-eating bats. In: Bee MA, Miller CT (eds) Psychological mechanisms in animal communication. Springer International Publishing, Cham, pp 285–312. (PMID: 10.1007/978-3-319-48690-1_11)
Page RA, Ryan MJ (2008) The effect of signal complexity on localization performance in bats that localize frog calls. Anim Behav 76(3):761–769. (PMID: 10.1016/j.anbehav.2008.05.006)
Parmentier FBR, Elford G et al (2008) The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task. Cognition 106(1):408–432. https://doi.org/10.1016/j.cognition.2007.03.008. (PMID: 10.1016/j.cognition.2007.03.00817445791)
Popper AN, Fay RR (eds) (2005) Sound source localization. Springer.
Riddell WI, Rothblat LA et al (1969) Auditory and visual distraction in hippocampectomized. J Comp Physiol Psychol 67(2,Pt.1):216–219. https://doi.org/10.1037/h0026760. (PMID: 10.1037/h00267605785607)
Ryan MJ (1985) The túngara frog: a study in sexual selection and communication. University of Chicago Press.
Ryan MJ, Akre KL et al (2019) Nineteen years of consistently positive and strong female mate preferences despite individual variation. Am Nat 194(2):125–134. https://doi.org/10.1086/704103. (PMID: 10.1086/70410331318282)
Ryan MJ, Rand AS (1990) The sensory basis of sexual selection for complex calls in the túngara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution 44(2):305–314. https://doi.org/10.1111/j.1558-5646.1990.tb05200.x. (PMID: 10.1111/j.1558-5646.1990.tb05200.x28564368)
Ryan MJ, Tuttle MD et al (1981) The costs and benefits of frog chorusing behavior. Behav Ecol Sociobiol 8(4):273–278. https://doi.org/10.1007/BF00299526. (PMID: 10.1007/BF00299526)
Ryan MJ, Tuttle MD et al (1982) Bat predation and sexual advertisement in a Neotropical anuran. Am Nat 119(1):136–139. https://doi.org/10.2307/2460665. (PMID: 10.2307/2460665)
Senzaki M, Yamaura Y et al (2016) Traffic noise reduces foraging efficiency in wild owls. Sci Rep 6(1):30602. https://doi.org/10.1038/srep30602. (PMID: 10.1038/srep30602275377094989872)
Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc B Biol Sci 278(1712):1646–1652. (PMID: 10.1098/rspb.2010.2262)
Stratman KD, Oldehoeft EA et al (2021) Woe is the loner: female treefrogs prefer clusters of displaying males over single “hotshot” males. Evolution 75(12):3026–3036. https://doi.org/10.1111/evo.14376. (PMID: 10.1111/evo.1437634626427)
ter Hofstede HM, Kalko EKV et al (2010) Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). J Comp Physiol A 196(5):349–358. https://doi.org/10.1007/s00359-010-0518-4. (PMID: 10.1007/s00359-010-0518-4)
Trillo PA, Athanas KA et al (2013) The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. J Evol Biol 26(1):216–222. https://doi.org/10.1111/jeb.12041. (PMID: 10.1111/jeb.1204123181745)
Trillo PA, Bernal XE et al (2016) Collateral damage or a shadow of safety? The effects of signalling heterospecific neighbours on the risks of parasitism and predation. Proc R Soc B Biol Sci 283(1831):20160343. https://doi.org/10.1098/rspb.2016.0343. (PMID: 10.1098/rspb.2016.0343)
Tuttle MD, Ryan MJ (1981) Bat predation and the evolution of frog vocalizations in the Neotropics. Sci 214(4521):677–678. https://doi.org/10.1126/science.214.4521.677. (PMID: 10.1126/science.214.4521.677)
Tuttle MD, Ryan MJ (1982) The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behav Ecol Sociobiol 11(2):125–131. (PMID: 10.1007/BF00300101)
Tuttle MD, Taft LK et al (1982) Evasive behaviour of a frog in response to bat predation. Anim Behav 30(2):393–397. https://doi.org/10.1016/S0003-3472(82)80050-X. (PMID: 10.1016/S0003-3472(82)80050-X)
Zelick RD, Narins PM (1983) Intensity discrimination and the precision of call timing in two species of neotropical treefrogs. J Comp Physiol 153(3):403–412. https://doi.org/10.1007/BF00612594. (PMID: 10.1007/BF00612594)
Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73(4):415–438. (PMID: 10.1086/420412)
Behaviour ABSAftSoA (2020). Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 159: I-XI. https://doi.org/10.1016/j.anbehav.2019.11.002.
Bradbury JW (1981). The evolution of leks. Natural select soc behav: 138–169.
Cramer MJ, Willig MR, et al. (2001). Trachops cirrhosus. Mamm Species: 1–6.
Goodale E, Ruxton GD, et al. (2019). Predator eavesdropping in a mixed-species environment: how prey species may use grouping, confusion, and the cocktail party effect to reduce predator detection. Frontiers in Ecology and Evolution 7. https://doi.org/10.3389/fevo.2019.00141.
Lee N, Kirtley AT, et al. (2019). Developing a phonotaxis performance index to uncover signal selectivity in walking phonotaxis. Front Eco Evol 7. https://doi.org/10.3389/fevo.2019.00334.
Prakash H, Greif S, et al. (2021). Acoustically eavesdropping bat predators take longer to capture katydid prey signalling in aggregation. J Exp Biol 224(10). https://doi.org/10.1242/jeb.233262.
Rhebergen F, Taylor RC, et al. (2015). Multimodal cues improve prey localization under complex environmental conditions. Proc R Soc B Biol Sci 282(1814). https://doi.org/10.1098/rspb.2015.1403.
Ruether BF, Brady MJ, et al. (2021). Mechanisms of collateral damage: heterospecific neighbor density mediates parasitism by eavesdroppers on hourglass treefrogs. Ethol Ecol Evol: 1-14. https://doi.org/10.1080/03949370.2021.1975313.
Surlykke A, Jakobsen L, et al. (2013). Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae). Front Physio 4. https://doi.org/10.3389/fphys.2013.00143.
Trillo PA, Benson CS, et al. (2019). The influence of signaling conspecific and heterospecific neighbors on eavesdropper pressure. Front Ecol Evol 7. https://doi.org/10.3389/fevo.2019.00292.
فهرسة مساهمة: Keywords: Call timing; Distraction; Eavesdropping; Predation; Sensory ecology; Túngara
تواريخ الأحداث: Date Created: 20220815 Date Completed: 20220817 Latest Revision: 20220817
رمز التحديث: 20221213
DOI: 10.1007/s00114-022-01813-w
PMID: 35969288
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1904
DOI:10.1007/s00114-022-01813-w