دورية أكاديمية

Thermal effects of vertical greening with creepers in different life stages on the outdoor environment under a cold climate.

التفاصيل البيبلوغرافية
العنوان: Thermal effects of vertical greening with creepers in different life stages on the outdoor environment under a cold climate.
المؤلفون: Zhen M; Department of Architecture, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China., Zou W; Department of Architecture, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. wilhelmzou@163.com.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Jan; Vol. 30 (3), pp. 5774-5790. Date of Electronic Publication: 2022 Aug 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Cold Climate* , Cold Temperature*, Temperature ; Humidity
مستخلص: In this study, we assessed the direct and indirect thermal benefits of growing creepers on a building during four life stages (green, yellowish, yellowing, and wilting) based on field measurements of the temperature and humidity, and theoretical analysis. The results showed that the direct thermal benefits of creepers were significant in the green, yellowish, and yellowing stages, where they gradually decreased as the life stages progressed, with cooling gains of up to 8 °C in the green stage compared with the concrete wall, and the insulation benefits were still approximately 1 °C in the wilting stage. Creepers also had significant indirect thermal benefits in the green, yellowish, and yellowing stages, where the best cooling effect was obtained in the yellowish stage, but no significant indirect thermal benefits were found in the wilting stage. In addition, creepers could reduce the ambient air temperature by increasing the relative humidity in the surrounding environment. The results obtained in this study may provide a scientific reference to facilitate the construction of vertical greening in cold regions and to determine the specifications for related applications, as well as providing insights into vertical greening research at the same latitude.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates[J]. Build Environ 43(4):480–493. (PMID: 10.1016/j.buildenv.2006.10.055)
Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5(1):1–12. (PMID: 10.1038/sdata.2018.214)
Campiotti CA, Gatti L, Campiotti A et al (2022) Vertical greenery as natural tool for improving energy efficiency of buildings[J]. Horticulturae 8(6):526. (PMID: 10.3390/horticulturae8060526)
Chen Q, Li B, Liu X (2013) An experimental evaluation of the living wall system in hot and humid climate[J]. Energy Build 61:298–307. (PMID: 10.1016/j.enbuild.2013.02.030)
Coma J, Pérez G, Gracia A (2017) Vertical greenery systems for energy savings in buildings: a comparative study between green walls and green facades[J]. Build Environ 111:228–237. (PMID: 10.1016/j.buildenv.2016.11.014)
Convertino F, Vox G, Schettini E (2020) Thermal barrier effect of green façades: long-wave infrared radiative energy transfer modelling[J]. Build Environ 177:106875. (PMID: 10.1016/j.buildenv.2020.106875)
Djedjig R, Bozonnet E, Belarbi R (2015) Analysis of thermal effects of vegetated envelopes: integration of a validated model in a building energy simulation program[J]. Energy Build 86:93–103. (PMID: 10.1016/j.enbuild.2014.09.057)
Freewan AA, Jaradat NAM, Amaireh IA (2022) Optimizing shading and thermal performances of vertical green wall on buildings in a hot arid region[J]. Buildings 12(2):216. (PMID: 10.3390/buildings12020216)
Galagoda RU, Jayasinghe G, Halwatura R et al (2018) The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort[J]. Urban For Urban Green 34:1–9. (PMID: 10.1016/j.ufug.2018.05.008)
Hoelscher MT, Nehls T, Jänicke B et al (2016) Quantifying cooling effects of facade greening: shading, transpiration and insulation[J]. Energy Build 114:283–290. (PMID: 10.1016/j.enbuild.2015.06.047)
Hoffmann KA, Šuklje T, Kozamernik J et al (2021) Modelling the cooling energy saving potential of facade greening in summer for a set of building typologies in mid-latitudes[J]. Energy Build 238:110816. (PMID: 10.1016/j.enbuild.2021.110816)
Ireland F, Essah E, Hadley P et al (2020) The impact of green facades and vegetative cover on the temperature and relative humidity within model buildings[J]. Build Environ 181:107009. (PMID: 10.1016/j.buildenv.2020.107009)
Jaafar B, Said I, Reba MN et al (2013) Impact of vertical greenery system on internal building corridors in the tropic[J]. Procedia Soc Behav Sci 105:558–568. (PMID: 10.1016/j.sbspro.2013.11.059)
Jim CY (2015) Thermal performance of climber green walls: effects of solar irradiance and orientation[J]. Apply Energy 154:631–643. (PMID: 10.1016/j.apenergy.2015.05.077)
Koch K, Ysebaert T, Denys S et al (2020) Urban heat stress mitigation potential of green walls: a review[J]. Urban For Urban Green 55:126843. (PMID: 10.1016/j.ufug.2020.126843)
Koyama T, Yoshinaga M, Hayashi H et al (2013) Identification of key plant traits contributing to the cooling effects of green façades using freestanding walls[J]. Build Environ 66:96–103. (PMID: 10.1016/j.buildenv.2013.04.020)
Morakinyo TE, Lai A, Lau K et al (2019) Thermal benefits of vertical greening in a high-density city: case study of Hong Kong[J]. Urban For Urban Green 37:42–55. (PMID: 10.1016/j.ufug.2017.11.010)
Oluwafeyikemi A, Julie G (2015) Evaluating the impact of vertical greening systems on thermal comfort in low income residences in Lagos, Nigeria[J]. Procedia Eng 118:420–433. (PMID: 10.1016/j.proeng.2015.08.443)
Othman AR, Sahidin N (2016) Vertical greening façade as passive approach in sustainable design[J]. Procedia Soc Behav Sci 222:845–854. (PMID: 10.1016/j.sbspro.2016.05.185)
Pan L, Chu L (2016) Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: a case study[J]. Build Environ 96:293–300. (PMID: 10.1016/j.buildenv.2015.06.033)
Peng LLH, Jiang Z, Yang X et al (2020) Cooling effects of block-scale facade greening and their relationship with urban form[J]. Build Environ 169:106552. (PMID: 10.1016/j.buildenv.2019.106552)
Peng LLH, Jiang Z, Yang X et al (2020) Energy savings of block-scale facade greening for different urban forms[J]. Appl Energy 279:115844. (PMID: 10.1016/j.apenergy.2020.115844)
Pérez G, Coma J, Martorell I et al (2014) Vertical Greenery Systems (VGS) for energy saving in buildings: A review[J]. Renew Sustain Energy Rev 39:139–165. (PMID: 10.1016/j.rser.2014.07.055)
Pérez G, Rincón L, Vila A et al (2011) Behaviour of green facades in Mediterranean Continental climate[J]. Energy Convers Manage 52(4):1861–1867. (PMID: 10.1016/j.enconman.2010.11.008)
Perini K, Bazzocchi F, Croci L (2017) The use of vertical greening systems to reduce the energy demand for air conditioning, Field monitoring in Mediterranean climate[J]. Energy Build 143:35–42. (PMID: 10.1016/j.enbuild.2017.03.036)
Perini K, Ottele M, Fraaij A et al (2011) Vertical greening systems and the effect on air flow and temperature on the building envelope[J]. Build Environ 46(11):2287–2294. (PMID: 10.1016/j.buildenv.2011.05.009)
Perini K, Ottele M, Giulini S et al (2017) Quantification of fine dust deposition on different plant species in a vertical greening system[J]. Ecol Eng 100:268–276. (PMID: 10.1016/j.ecoleng.2016.12.032)
Rupasinghe HT, Halwatura RU (2020) Benefits of implementing vertical greening in tropical climates[J]. Urban For Urban Green 53:126708. (PMID: 10.1016/j.ufug.2020.126708)
Sheweka S, Mohamed NM (2012) Green facades as a new sustainable approach towards climate change[J]. Energy Procedia 18:507–520. (PMID: 10.1016/j.egypro.2012.05.062)
Susorova I, Azimi P, Stephens B (2014) The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations[J]. Build Environ 76:113–124. (PMID: 10.1016/j.buildenv.2014.03.011)
Vox G, Blanco I, Schettini E (2018) Green façades to control wall surface temperature in buildings[J]. Build Environ 129:154–166. (PMID: 10.1016/j.buildenv.2017.12.002)
Wong I, Baldwin AN (2016) Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region[J]. Build Environ 97:34–39. (PMID: 10.1016/j.buildenv.2015.11.028)
Wong NH, Chen Y, Ong CL et al (2003) Investigation of thermal benefits of rooftop garden in the tropical environment[J]. Build Environ 38(2):261–270. (PMID: 10.1016/S0360-1323(02)00066-5)
Wong NH, Tan AY, Chen Y et al (2010) Thermal evaluation of vertical greenery systems for building walls[J]. Build Environ 45(3):663–672. (PMID: 10.1016/j.buildenv.2009.08.005)
Xing Q, Hao X, Lin Y et al (2019) Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter[J]. Energy Build 183:105–117. (PMID: 10.1016/j.enbuild.2018.10.038)
Xu D, Zhou D, Wang Y et al (2020) Temporal and spatial variations of urban climate and derivation of an urban climate map for Xi’an, China[J]. Sustain Cities Soc 52:101850. (PMID: 10.1016/j.scs.2019.101850)
Yin H, Kong F, Dronova I et al (2019) Investigation of extensive green roof outdoor spatio-temporal thermal performance during summer in a subtropical monsoon climate[J]. Sci Total Environ 696:133976. (PMID: 10.1016/j.scitotenv.2019.133976)
Zhang L, Deng Z, Liang L (2019) Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment[J]. Energy Build 204:109502. (PMID: 10.1016/j.enbuild.2019.109502)
Zheng X, Dai T, Tang M (2020) An experimental study of vertical greenery systems for window shading for energy saving in summer[J]. J Clean Prod 259:120708. (PMID: 10.1016/j.jclepro.2020.120708)
معلومات مُعتمدة: 51808440 the NSFC General Project; 20205 the Opening Fund of Key Laboratory of Interactive Media Design and Equipment Service Innovation, Ministry of Culture and Tourism
فهرسة مساهمة: Keywords: Cold region; Creeper; Life stage; Outdoor environment; Thermal benefit; Vertical greenery
تواريخ الأحداث: Date Created: 20220818 Date Completed: 20230206 Latest Revision: 20230206
رمز التحديث: 20240513
DOI: 10.1007/s11356-022-22579-8
PMID: 35980527
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-022-22579-8