دورية أكاديمية

JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species.

التفاصيل البيبلوغرافية
العنوان: JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species.
المؤلفون: Santos CC; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Cardim-Pires TR; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Shvachiy L; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany.; Faculdade de Medicina, Centro Cardiovascular da Universidade de Lisboa, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028, Lisbon, Portugal., Fonseca-Fonseca LA; Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba., Muñoz P; Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile., Almeida ÁMAN; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Costa ACS; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Teles-Souza J; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Ochoa-Rodríguez E; Organic Synthesis Laboratory of the Faculty of Chemistry of the University of Havana, Havana, Cuba., de Fátima Dias Costa M; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Palhano FL; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Segura-Aguilar J; Molecular & Clinical Pharmacology, Faculty of Medicine, ICBM, University of Chile, Santiago, Chile., Barbosa DB; Laboratory of Molecular Modeling, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil., do Bomfim MR; Laboratory of Molecular Modeling, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil., Dos Santos Junior MC; Laboratory of Molecular Modeling, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil., Leite FHA; Laboratory of Molecular Modeling, Department of Health, State University of Feira de Santana, Feira de Santana, Brazil., da Rocha Pita SS; Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Federal University of Bahia - College of Pharmacy, Salvador, Brazil., Costa SL; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil., Núñez-Figueredo Y; Centro de Investigación y Desarrollo de Medicamentos (CIDEM), La Habana, Cuba., Outeiro TF; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany.; Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.; Scientific Employee With an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany., Foguel D; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Silva VDA; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, Salvador, 40110-100, Brazil. vdsilva@ufba.br.
المصدر: Neurotoxicity research [Neurotox Res] 2022 Dec; Vol. 40 (6), pp. 2135-2147. Date of Electronic Publication: 2022 Aug 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009-> : New York : Springer
Original Publication: [Amsterdam?] : Harwood Academic Publishers,
مواضيع طبية MeSH: Neuroblastoma* , Parkinson Disease*/drug therapy , Dihydropyridines*, Humans ; alpha-Synuclein ; Benzodiazepines ; Molecular Docking Simulation
مستخلص: Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001.
Alvarez-Castelao B, Castaño JG (2011) Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci 68(15):2643–2654.
Arlehamn CS, Lindestam RD, Pham J, Kuan R, Frazier A, Dutra JR, Phillips E, Mallal S, Roederer M, Marder KS (2020) Α-synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11(1):1–11.
Bellomo G, Paciotti S, Gatticchi L, Parnetti L (2020) The vicious cycle between Α-synuclein aggregation and autophagic-lysosomal dysfunction. Mov Disord 35(1):34–44.
Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob AO, Mante M (2013) Tom40 mediates mitochondrial dysfunction induced by Α-synuclein accumulation in Parkinson’s disease.". PLoS ONE 8(4):e62277.
Berendsen HJ, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271. https://doi.org/10.1021/j100308a038.
Berendsen HJC, van Postma JPM, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690.
Berendsen HJC, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56.
Briceño A, Muñoz P, Brito P, Huenchuguala S, Segura-Aguilar J, Paris IB (2016) Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotox Res 29(3):381–393.
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. https://doi.org/10.1063/1.2408420.
Coelho-Cerqueira E, Carmo-Gonçalves P, Pinheiro AS, Cortines J, Follmer C (2013) Α-synuclein as an intrinsically disordered monomer–fact or artefact? FEBS J 280(19):4915–4927.
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092.
de Araújo FM, Ferreira RS, Souza CS, Santos CCD, Rodrigues TLRS, Juliana Helena C, e Silva, Juciano Gasparotto, Daniel Pens Gelain, Ramon S El-Bachá, Costa Maria de Fátima D (2018) Aminochrome decreases Ngf, Gdnf and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 66:98–106.
De Araújo FM, Frota AF, de Jesus LB, Macedo TC, Cuenca-Bermejo L, Sanchez-Rodrigo C, Ferreira KM, de Oliveira JV, de Fatima Dias Costa M, Segura-Aguilar J, Costa SL (2022) Aminochrome induces neuroinflammation and dopaminergic neuronal loss: a new preclinical model to find anti-inflammatory and neuroprotective drugs for Parkinson’s disease. Cell Mol Neurobiol 1–17.
Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL (2020) Green tea polyphenol microparticles based on the oxidative coupling of Egcg inhibit amyloid aggregation/cytotoxicity and serve as a platform for drug delivery. ACS Biomater Sci Eng 6(8):4414–4423. https://doi.org/10.1021/acsbiomaterials.0c00188.
Figueredo YN, Rodríguez EO, Reyes YV, Domínguez CC, Parra AL, Sánchez JR, Hernández RD, Verdecia MP, Pardo GL, Andreu. (2013) Characterization of the anxiolytic and sedative profile of Jm-20: a novel benzodiazepine–dihydropyridine hybrid molecule. Neurol Res 35(8):804–812.
Fonseca-Fonseca LA, Amaral VD, da Silva M, Wong-Guerra J-S, Yaquis ASP, Ochoa-Rodríguez E, Verdecia-Reyes Y, Mendes F, de Araújo R, Santana C, Outeiro TF (2021) Jm-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson’s disease: mitochondrial protection and antioxidant properties. Neurotoxicology 82:89–98.
Fonseca-Fonseca LA, Wong-Guerra M, Ramírez-Sánchez J, Montano-Peguero Y, Yaquis ASP, Rodríguez AM, Amaral VD, da Silva S, Costa L, Pardo-Andreu GL, Núñez-Figueredo Y (2019) Jm-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson’s disease. Neurosci Lett 690:29–35.
Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M (2017) Proteins plus: a web portal for structure analysis of macromolecules.". Nucleic Acids Res 45(W1):W337–W343.
Gomes D, Sousa G, da Silva A, Pascutti P (2012) Surfinmd. Accessed 2 Jun 2021. Form of Item. https://lmdm.biof.ufrj.br/software/surfinmd/index.
Gupta E, Gupta SR, Kumar A, Kulshreshtha A, Niraj RR (2019) Molecular docking study to identify potent inhibitors of alpha-synuclein aggregation of Parkinson’s disease.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472.
Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation S1549-9618(70)00301-6.
Hsieh C-J, Ferrie JJ, Kuiying Xu, Lee I, Graham TJA, Zhude Tu, Jennifer Yu, Dhavale D, Kotzbauer P, James E, Petersson. (2018) Alpha synuclein fibrils contain multiple binding sites for small molecules. ACS Chem Neurosci 9(11):2521–2527.
Hu Z, Wang W, Ling J, Jiang C (2016) Α-mangostin inhibits Α-synuclein-induced microglial neuroinflammation and neurotoxicity. Cell Mol Neurobiol 36(5):811–820.
Huenchuguala S, Muñoz P, Segura-Aguilar J (2017) The importance of mitophagy in maintaining mitochondrial function in U373mg cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chem Neurosci 8(10):2247–2253.
Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B (2014) Glutathione transferase Mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10(4):618–630.
Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–637. https://doi.org/10.1002/bip.360221211.
Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326.
Lindahl E, Berk H, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann 7(8):306–317. https://doi.org/10.1007/s008940100045.
Lázaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Kröhnert K, Klucken J, Pereira MD (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10(11):e1004741.
Miyamoto S, Kollman PA (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962.
Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) Dt-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145(1):37–47.
Muñoz P, Huenchuguala S, Paris I, Cuevas C, Villa M, Caviedes P, Segura-Aguilar J, Tizabi Y (2012) Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: implications for Parkinson’s disease. Neurotox Res 22(2):177–180.
Ngoungoure VL, Ndam PM, Tizabi Y, Valdes R, Moundipa PF, Segura-Aguilar J (2019) Protective effects of crude plant extracts against aminochrome-induced toxicity in human astrocytoma cells: implications for Parkinson’s disease. Clinical Pharmacology and Translational Medicine 3(1):125.
Nuñez-Figueredo Y, Ramírez-Sánchez J, Pardo GL, Andreu E-R, Verdecia-Reyes Y, Souza DO (2018) Multi-targeting effects of a new synthetic molecule (Jm-20) in experimental models of cerebral ischemia. Pharmacol Rep 70(4):699–704.
Nuñez-Figueredo Y, Ramírez-Sánchez J, Delgado-Hernández R, Porto-Verdecia M, Ochoa-Rodríguez E, Verdecia-Reyes Y, Marin-Prida J, González-Durruthy M, Uyemura SA, Rodrigues FP (2014) Jm-20, a novel benzodiazepine–dihydropyridine hybrid molecule, protects mitochondria and prevents ischemic insult-mediated neural cell death in vitro. Eur J Pharmacol 726:57–65.
Ordonez DG, Lee MK, Feany MB (2018) Α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97(1):108–124. e6.
Palhano FL, Leme LP, Busnardo RG, Foguel D (2009) Trapping the monomer of a non-amyloidogenic variant of transthyretin: exploring its possible use as a therapeutic strategy against transthyretin amyloidogenic diseases. J Biol Chem 284(3):1443–1453.
Paris I, Munoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121(2):376–388.
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–54. https://doi.org/10.1093/bioinformatics/btt055.
Rondón-Villarreal P, López WOC (2020) Identification of potential natural neuroprotective molecules for Parkinson’s disease by using chemoinformatics and molecular docking. J Mol Graph Model 97:107547.
Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9(1):56–68. https://doi.org/10.1002/prot.340090107. (PMID: 10.1002/prot.340090107)
Santos CC, Muñoz P, Almeida ÁM, de Lima David JP, David JM, Lima Costa S, Segura-Aguilar J, Silva VD (2020) The flavonoid agathisflavone from Poincianella pyramidalis prevents aminochrome neurotoxicity. Neurotox Res (3):579–584. https://doi.org/10.1007/s12640-020-00237-6.
Santos CC, Araújo FM, Ferreira RS, Silva VB, Silva JHC, Grangeiro MS, Soares ÉN, Érica Patricia L, Pereira CS, Souza, and Silvia L Costa. (2017) Aminochrome induces microglia and astrocyte activation. Toxicol in Vitro 42:54–60.
Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the gromos force-field versions 54a7 and 54b7. Eur Biophys J 40(7):843–56. https://doi.org/10.1007/s00249-011-0700-9.
Segura-Aguilar J, Paris I (2014) Mechanisms of dopamine oxidation and Parkinson’s disease. Handbook of Neurotoxicity/ed. Kostrzewa RM New York, NY: Springer New York: 865–883.
Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12(6):897.
Segura-Aguilar J (2018) Neurotoxins as preclinical models for Parkinson’s disease. Neurotox Res 34(4):870–877.
Segura-Aguilar J (2019) On the role of aminochrome in mitochondrial dysfunction and endoplasmic reticulum stress in Parkinson’s disease. Front Neurosci 13:271.
Segura-Aguilar J (2021) Dopamine oxidation to neuromelanin and neurotoxic metabolites. In: Segura-Aguilar J (ed) Clinical Studies and Therapies in Parkinson’s Disease : Translations from Preclinical Models. Academic Press Inc., United States, pp 213–223.
Shirakashi Y, Kawamoto Y, Tomimoto H, Takahashi R, Ihara M (2006) Α-synuclein is colocalized with 14-3-3 and synphilin-1 in A53t transgenic mice. Acta Neuropathol 112(6):681–689.
Sidhu A, Wersinger C, Vernier P (2004) Does Α-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 18(6):637–647.
Silva V, Segura-Aguilar J (2021) State and perspectives on flavonoid neuroprotection against aminochrome-induced neurotoxicity. Neural Regen Res 16(9):1797.
Spillantini MG, Anthony Crowther R, Jakes R, Hasegawa M, Goedert M (1998) Α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95(11):6469–6473.
Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Ther Comput 14(11):5834–5845.
Touw WG, Baakman C, Black J, Te Beek TA, Krieger E, Joosten RP, Vriend G (2015) A series of Pdb-related databanks for everyday needs. Nucleic Acids Res 43(Database issue): D364–8. https://doi.org/10.1093/nar/gku1028.
Ulmer TS, Bax Ad, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human Α-synuclein. J Biol Chem 280(10):9595–9603.
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) Gromacs: fast, flexible, and free. J Comput Chem 26(16): 1701–18. https://doi.org/10.1002/jcc.20291.
van der Spoel D, van Maaren PJ, Larsson P, Tîmneanu N (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110(9):4393–4398.
Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280(2):285–295.
Zhou ZD, Lim TM (2009) Dopamine (Da) induced irreversible proteasome inhibition via Da derived quinones. Free Radical Res 43(4):417–430.
معلومات مُعتمدة: CAPES/PVE- 189576/09-2014 Coordenação de Apoio de Pessoal de Nível Superior; SFRH/BD/143286/2019 Fundação para Ciência e Tecnologia; CNPQ Edital Universal/2018 - 429127/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico; proj651 CENAPAD-SP (National Center for High Performance Computing in São Paulo), UNICAMP / FINEP - MCT; EXC 2067/1- 390729940 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
فهرسة مساهمة: Keywords: Alpha-synuclein; JM-20; Neuroprotection; Neurotoxicity; Parkinson’s disease
المشرفين على المادة: 0 (alpha-Synuclein)
39984-17-3 (aminochrome 1)
12794-10-4 (Benzodiazepines)
0 (Dihydropyridines)
تواريخ الأحداث: Date Created: 20220823 Date Completed: 20221230 Latest Revision: 20230103
رمز التحديث: 20240628
DOI: 10.1007/s12640-022-00559-7
PMID: 35997936
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-3524
DOI:10.1007/s12640-022-00559-7