دورية أكاديمية

Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae.

التفاصيل البيبلوغرافية
العنوان: Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae.
المؤلفون: Xiaokaiti X; Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan., Hashiguchi Y; Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-0801, Japan., Ota H; Institute of Natural and Environmental Sciences, University of Hyogo, and Museum of Nature and Human Activities, Sanda 669-1546, Japan., Kumazawa Y; Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan.
المصدر: Genes [Genes (Basel)] 2022 Aug 17; Vol. 13 (8). Date of Electronic Publication: 2022 Aug 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101551097 Publication Model: Electronic Cited Medium: Internet ISSN: 2073-4425 (Electronic) Linking ISSN: 20734425 NLM ISO Abbreviation: Genes (Basel) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel : MDPI
مواضيع طبية MeSH: Genome, Mitochondrial*/genetics , Hydrophiidae*/genetics, Animals ; Elapidae/genetics ; Phylogeny ; RNA, Transfer/genetics
مستخلص: Mitochondrial genomes of four elapid snakes (three marine species [ Emydocephalus ijimae , Hydrophis ornatus , and Hydrophis melanocephalus ], and one terrestrial species [ Sinomicrurus japonicus ]) were completely sequenced by a combination of Sanger sequencing, next-generation sequencing and Nanopore sequencing. Nanopore sequencing was especially effective in accurately reading through long tandem repeats in these genomes. This led us to show that major noncoding regions in the mitochondrial genomes of those three sea snakes contain considerably long tandem duplications, unlike the mitochondrial genomes previously reported for same and other sea snake species. We also found a transposition of the light-strand replication origin within a tRNA gene cluster for the three sea snakes. This change can be explained by the Tandem Duplication-Random Loss model, which was further supported by remnant intervening sequences between tRNA genes. Mitochondrial genomes of true snakes (Alethinophidia) have been shown to contain duplicate major noncoding regions, each of which includes the control region necessary for regulating the heavy-strand replication and transcription from both strands. However, the control region completely disappeared from one of the two major noncoding regions for two Hydrophis sea snakes, posing evolutionary questions on the roles of duplicate control regions in snake mitochondrial genomes. The timing and molecular mechanisms for these changes are discussed based on the elapid phylogeny.
References: Mitochondrial DNA B Resour. 2019 Oct 17;4(2):3628-3629. (PMID: 33366115)
Mol Phylogenet Evol. 2003 Nov;29(2):289-97. (PMID: 13678684)
Nature. 1981 Apr 9;290(5806):470-4. (PMID: 7219536)
Mitochondrial DNA B Resour. 2019 Jul 22;4(2):2658-2659. (PMID: 33365670)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
BMC Bioinformatics. 2010 Sep 27;11:485. (PMID: 20875133)
Mol Biol Evol. 2001 Jul;18(7):1330-42. (PMID: 11420371)
Nucleic Acids Res. 1999 Apr 15;27(8):1767-80. (PMID: 10101183)
DNA Res. 2004 Apr 30;11(2):115-25. (PMID: 15449544)
BMC Evol Biol. 2006 Feb 07;6:11. (PMID: 16464263)
BMC Evol Biol. 2007 Jul 26;7:123. (PMID: 17655768)
J Mol Evol. 2005 Jul;61(1):12-22. (PMID: 16007493)
Nucleic Acids Res. 2015 Oct 30;43(19):9262-75. (PMID: 26253742)
BMC Genomics. 2018 May 10;19(1):354. (PMID: 29747572)
Genes Genet Syst. 2005 Jun;80(3):213-24. (PMID: 16172533)
Nat Biotechnol. 2011 May 15;29(7):644-52. (PMID: 21572440)
Nature. 1981 Apr 9;290(5806):457-65. (PMID: 7219534)
Int J Mol Sci. 2021 Feb 11;22(4):. (PMID: 33670420)
Dev Growth Differ. 2019 Jun;61(5):316-326. (PMID: 31037722)
BMC Evol Biol. 2006 Mar 24;6:29. (PMID: 16563161)
Gene. 2006 Sep 15;380(1):14-20. (PMID: 16842936)
Ecol Evol. 2020 Mar 11;10(7):3544-3560. (PMID: 32274008)
Gene. 1997 Dec 31;205(1-2):125-40. (PMID: 9461386)
PeerJ. 2021 Jan 13;9:e10552. (PMID: 33520439)
J Mol Evol. 2003 Jan;56(1):46-53. (PMID: 12569422)
Int Rev Cytol. 1992;141:217-32. (PMID: 1452432)
Mol Biol Evol. 1996 Nov;13(9):1242-54. (PMID: 8896377)
Genome Res. 2017 May;27(5):722-736. (PMID: 28298431)
Mol Phylogenet Evol. 1997 Dec;8(3):349-62. (PMID: 9417893)
Cell. 1985 Oct;42(3):951-8. (PMID: 2996785)
J Evol Biol. 2008 May;21(3):682-95. (PMID: 18384538)
Genetics. 1998 Sep;150(1):313-29. (PMID: 9725849)
Mol Biol Evol. 1987 May;4(3):203-21. (PMID: 3328815)
J Mol Evol. 1987;26(3):205-11. (PMID: 3129568)
J Mol Evol. 1993 Oct;37(4):380-98. (PMID: 7508516)
PLoS One. 2019 May 10;14(5):e0216148. (PMID: 31075128)
Mitochondrial DNA B Resour. 2021 Feb 9;6(2):402-403. (PMID: 33628875)
Nucleic Acids Res. 1981 Oct 24;9(20):5411-21. (PMID: 7301592)
Int Rev Cytol. 1992;141:173-216. (PMID: 1452431)
Mol Phylogenet Evol. 2013 Nov;69(2):328-38. (PMID: 23142697)
Mitochondrial DNA B Resour. 2019 Jul 12;4(2):2328-2329. (PMID: 33365528)
Proc Natl Acad Sci U S A. 1981 Oct;78(10):6116-20. (PMID: 6273850)
Mitochondrial DNA A DNA Mapp Seq Anal. 2018 Jul;29(5):772-777. (PMID: 28903620)
Mitochondrial DNA B Resour. 2020 Jan 27;5(1):891-892. (PMID: 33426277)
Gene. 2001 Dec 12;280(1-2):1-7. (PMID: 11738812)
فهرسة مساهمة: Keywords: Nanopore sequencing; control region; light-strand replication origin; tandem repeat
المشرفين على المادة: 9014-25-9 (RNA, Transfer)
تواريخ الأحداث: Date Created: 20220826 Date Completed: 20220829 Latest Revision: 20220914
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9407768
DOI: 10.3390/genes13081470
PMID: 36011381
قاعدة البيانات: MEDLINE
الوصف
تدمد:2073-4425
DOI:10.3390/genes13081470