دورية أكاديمية

Affinity-matured DLL4 ligands as broad-spectrum modulators of Notch signaling.

التفاصيل البيبلوغرافية
العنوان: Affinity-matured DLL4 ligands as broad-spectrum modulators of Notch signaling.
المؤلفون: Gonzalez-Perez D; Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA., Das S; Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA., Antfolk D; Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA., Ahsan HS; Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA., Medina E; Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA., Dundes CE; Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA., Jokhai RT; Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA., Egan ED; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA., Blacklow SC; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA., Loh KM; Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA., Rodriguez PC; Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA., Luca VC; Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA. vince.luca@moffitt.org.
المصدر: Nature chemical biology [Nat Chem Biol] 2023 Jan; Vol. 19 (1), pp. 9-17. Date of Electronic Publication: 2022 Sep 01.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Adaptor Proteins, Signal Transducing*/metabolism , Intercellular Signaling Peptides and Proteins*/metabolism, Humans ; Animals ; Mice ; Ligands ; Calcium-Binding Proteins/metabolism ; Signal Transduction/physiology ; Receptors, Notch/metabolism
مستخلص: The Notch pathway regulates cell fate decisions and is an emerging target for regenerative and cancer therapies. Recombinant Notch ligands are attractive candidates for modulating Notch signaling; however, their intrinsically low receptor-binding affinity restricts their utility in biomedical applications. To overcome this limitation, we evolved variants of the ligand Delta-like 4 with enhanced affinity and cross-reactivity. A consensus variant with maximized binding affinity, Delta MAX , binds human and murine Notch receptors with 500- to 1,000-fold increased affinity compared with wild-type human Delta-like 4. Delta MAX also potently activates Notch in plate-bound, bead-bound and cellular formats. When administered as a soluble decoy, Delta MAX inhibits Notch in reporter and neuronal differentiation assays, highlighting its dual utility as an agonist or antagonist. Finally, we demonstrate that Delta MAX stimulates increased proliferation and expression of effector mediators in T cells. Taken together, our data define Delta MAX as a versatile tool for broad-spectrum activation or inhibition of Notch signaling.
(© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Sprinzak, D. & Blacklow, S. C. Biophysics of Notch signaling. Annu. Rev. Biophys. 50, 157–189 (2021). (PMID: 10.1146/annurev-biophys-101920-082204)
Kopan, R. & Ilagan, Ma. X. G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009). (PMID: 10.1016/j.cell.2009.03.045)
Lovendahl, K. N., Blacklow, S. C. & Gordon, W. R. in Molecular Mechanisms of Notch Signaling Vol. 1066 (eds. Borggrefe, T. & Giaimo, B. D.) 47–58 (Springer International Publishing, 2018).
Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat. Struct. Mol. Biol. 15, 849–857 (2008). (PMID: 10.1038/nsmb.1457)
Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015). (PMID: 10.1016/j.devcel.2015.05.004)
Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295–300 (2007). (PMID: 10.1038/nsmb1227)
Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000). (PMID: 10.1242/dev.127.7.1373)
Seib, E. & Klein, T. The role of ligand endocytosis in notch signalling. Biol. Cell 113, 401–418 (2021). (PMID: 10.1111/boc.202100009)
De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999). (PMID: 10.1038/19083)
Wu, L. et al. MAML1, a human homologue of Drosophila Mastermind, is a transcriptional co-activator for NOTCH receptors. Nat. Genet. 26, 484–489 (2000). (PMID: 10.1038/82644)
Yamamoto, S. et al. A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338, 1229–1232 (2012). (PMID: 10.1126/science.1228745)
Andrawes, M. B. et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biol. Chem. 288, 25477–25489 (2013). (PMID: 10.1074/jbc.M113.454850)
Luca, V. C. et al. Structural basis for Notch1 engagement of Delta-like 4. Science 347, 847–853 (2015). (PMID: 10.1126/science.1261093)
Luca, V. C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017). (PMID: 10.1126/science.aaf9739)
Tveriakhina, L. et al. The ectodomains determine ligand function in vivo and selectivity of DLL1 and DLL4 toward NOTCH1 and NOTCH2 in vitro. eLife 7, e40045 (2018). (PMID: 10.7554/eLife.40045)
Biktasova, A. K. et al. Multivalent forms of the Notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Cancer Res. 75, 4728–4741 (2015). (PMID: 10.1158/0008-5472.CAN-14-1154)
Nandagopal, N. et al. Dynamic ligand discrimination in the notch signaling pathway. Cell 172, 869–880.e19 (2018). (PMID: 10.1016/j.cell.2018.01.002)
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009). (PMID: 10.1016/j.cell.2009.03.025)
Van de Walle, I. et al. Specific Notch receptor–ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. J. Exp. Med. 210, 683–697 (2013). (PMID: 10.1084/jem.20121798)
Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017). (PMID: 10.1038/nrc.2016.145)
Ran, Y. et al. Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9, 950–966 (2017). (PMID: 10.15252/emmm.201607265)
Goruganthu, M. U. L., Shanker, A., Dikov, M. M. & Carbone, D. P. Specific targeting of Notch ligand-receptor interactions to modulate immune responses: a review of clinical and preclinical findings. Front. Immunol. 11, 1958 (2020). (PMID: 10.3389/fimmu.2020.01958)
Espinoza, I. & Miele, L. Notch inhibitors for cancer treatment. Pharmacol. Therapeutics 139, 95–110 (2013). (PMID: 10.1016/j.pharmthera.2013.02.003)
Tiyanont, K., Wales, T. E., Siebel, C. W., Engen, J. R. & Blacklow, S. C. Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. J. Mol. Biol. 425, 3192–3204 (2013). (PMID: 10.1016/j.jmb.2013.05.025)
Xu, X. et al. Insights into autoregulation of Notch3 from structural and functional studies of its negative regulatory region. Structure 23, 1227–1235 (2015). (PMID: 10.1016/j.str.2015.05.001)
Güner, G. & Lichtenthaler, S. F. The substrate repertoire of γ-secretase/presenilin. Semin. Cell Dev. Biol. 105, 27–42 (2020). (PMID: 10.1016/j.semcdb.2020.05.019)
Komatsu, H. et al. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol. 6, e196 (2008). (PMID: 10.1371/journal.pbio.0060196)
Liu, L., Wada, H., Matsubara, N., Hozumi, K. & Itoh, M. Identification of domains for efficient notch signaling activity in immobilized notch ligand proteins: critical domains of immobilized ligands for notch signaling. J. Cell. Biochem. 118, 785–796 (2017). (PMID: 10.1002/jcb.25744)
Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010). (PMID: 10.1038/nature08959)
Malecki, M. J. et al. Leukemia-associated mutations within the notch1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell. Biol. 26, 4642–4651 (2006). (PMID: 10.1128/MCB.01655-05)
James, A. C. et al. Notch4 reveals a novel mechanism regulating Notch signal transduction. Biochim. Biophys. Acta 1843, 1272–1284 (2014). (PMID: 10.1016/j.bbamcr.2014.03.015)
Trotman-Grant, A. C. et al. DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat. Commun. 12, 5023 (2021). (PMID: 10.1038/s41467-021-25245-8)
Groot, A. J. & Vooijs, M. A. in Notch Signaling in Embryology and Cancer Vol. 727 (eds. Reichrath, J. & Reichrath, S.) 15–36 (Springer US, 2012).
Cho, O. H. et al. Notch regulates cytolytic effector function in CD8+ T cells. J. Immunol. 182, 3380–3389 (2009). (PMID: 10.4049/jimmunol.0802598)
Palaga, T., Miele, L., Golde, T. E. & Osborne, B. A. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003). (PMID: 10.4049/jimmunol.171.6.3019)
Thomas, A. K., Maus, M. V., Shalaby, W. S., June, C. H. & Riley, J. L. A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin. Immunol. 105, 259–272 (2002). (PMID: 10.1006/clim.2002.5277)
Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004). (PMID: 10.1242/dev.01436)
Breunig, J. J. & Nelson, B. R. in Patterning and Cell Type Specification in the Developing CNS and PNS (eds. Rubenstein, J. & Rakic, P.) 313–332 (Elsevier, 2013); https://doi.org/10.1016/B978-0-12-397265-1.00070-8.
Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012). (PMID: 10.1038/nbt.2249)
Qi, Y. et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 35, 154–163 (2017). (PMID: 10.1038/nbt.3777)
Real, P. J. et al. γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat. Med. 15, 50–58 (2009). (PMID: 10.1038/nm.1900)
van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005). (PMID: 10.1038/nature03659)
Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010). (PMID: 10.1038/nature08878)
Seals, D. F. & Courtneidge, S. A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7–30 (2003). (PMID: 10.1101/gad.1039703)
McCarthy, J. V., Twomey, C. & Wujek, P. Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity. Cell. Mol. Life Sci. 66, 1534–1555 (2009). (PMID: 10.1007/s00018-009-8435-9)
Sierra, R. A. et al. Rescue of Notch-1 signaling in antigen-specific CD8 + T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol. Res 2, 800–811 (2014). (PMID: 10.1158/2326-6066.CIR-14-0021)
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). (PMID: 10.1126/science.1102160)
Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C. & Bernstein, I. D. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106, 2693–2699 (2005). (PMID: 10.1182/blood-2005-03-1131)
Mohtashami, M. et al. Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J. Immunol. 185, 867–876 (2010). (PMID: 10.4049/jimmunol.1000782)
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). (PMID: 10.1016/j.jmb.2007.05.022)
Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005). (PMID: 10.1093/nar/gki370)
Maus, M. V. et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol. 20, 143–148 (2002). (PMID: 10.1038/nbt0202-143)
Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016). (PMID: 10.1016/j.cell.2016.06.011)
معلومات مُعتمدة: R01 CA233512 United States CA NCI NIH HHS; R35 GM133482 United States GM NIGMS NIH HHS; DP5 OD024558 United States OD NIH HHS; P01 CA250984 United States CA NCI NIH HHS; P30 CA076292 United States CA NCI NIH HHS; R01 CA184185 United States CA NCI NIH HHS; R01 CA273034 United States CA NCI NIH HHS; R35 CA220340 United States CA NCI NIH HHS; R01 CA262121 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Ligands)
0 (Adaptor Proteins, Signal Transducing)
0 (Intercellular Signaling Peptides and Proteins)
0 (Calcium-Binding Proteins)
0 (Receptors, Notch)
0 (DLL4 protein, human)
0 (DLL4 protein, mouse)
تواريخ الأحداث: Date Created: 20220901 Date Completed: 20221230 Latest Revision: 20240422
رمز التحديث: 20240423
مُعرف محوري في PubMed: PMC10132381
DOI: 10.1038/s41589-022-01113-4
PMID: 36050494
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-022-01113-4