دورية أكاديمية

Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells.

التفاصيل البيبلوغرافية
العنوان: Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells.
المؤلفون: Fontelo R; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal., da Costa DS; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal., Reis RL; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal., Novoa-Carballal R; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal. Electronic address: ramon.novoa@i3bs.uminho.pt., Pashkuleva I; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal. Electronic address: pashkuleva@i3bs.uminho.pt.
المصدر: Colloids and surfaces. B, Biointerfaces [Colloids Surf B Biointerfaces] 2022 Nov; Vol. 219, pp. 112774. Date of Electronic Publication: 2022 Aug 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier Country of Publication: Netherlands NLM ID: 9315133 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-4367 (Electronic) Linking ISSN: 09277765 NLM ISO Abbreviation: Colloids Surf B Biointerfaces Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Amsterdam ; New York : Elsevier, c1993-
مستخلص: Bone healing after a tumor removal can be promoted by biomaterials that enhance the bone regeneration and prevent the tumor relapse. Herein, we obtained several nanopatterns by self-assembly of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) with different molecular weights and investigated the adhesion and morphology of human bone marrow mesenchymal stem cells (BMMSC) and osteosarcoma cell line (SaOS-2) on these patterns aiming to identify topography and chemistry that promote bone healing. We analyzed > 2000 cells per experimental condition using imaging software and different morphometric descriptors, namely area, perimeter, aspect ratio, circularity, surface/area, and fractal dimension of cellular contour (FDC). The obtained data were used as inputs for principal component analysis, which showed distinct response of BMMSC and SaOS-2 to the surface topography and chemistry. Among the studied substrates, micellar nanopatterns assembled from the copolymer with high molecular weight promote the adhesion and spreading of BMMSC and have an opposite effect on SaOS-2. This nanopattern is thus beneficial for bone regeneration after injury or pathology, e.g. bone fracture or tumor removal.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
فهرسة مساهمة: Keywords: Block copolymer; Cell spreading; Coating; Principal Component Analysis; Self-Assembly
تواريخ الأحداث: Date Created: 20220906 Latest Revision: 20231016
رمز التحديث: 20231215
DOI: 10.1016/j.colsurfb.2022.112774
PMID: 36067682
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-4367
DOI:10.1016/j.colsurfb.2022.112774