دورية أكاديمية

Identification of trypsin-degrading commensals in the large intestine.

التفاصيل البيبلوغرافية
العنوان: Identification of trypsin-degrading commensals in the large intestine.
المؤلفون: Li Y; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.; Institute for Cancer Research, Faculty of Medicine, University of Oslo, Oslo, Norway., Watanabe E; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.; Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan., Kawashima Y; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan., Plichta DR; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Wang Z; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Ujike M; Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan., Ang QY; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Wu R; Interdisciplinary Life Science-PULSe, Purdue University, West Lafayette, IN, USA., Furuichi M; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Takeshita K; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Yoshida K; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Nishiyama K; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Kearney SM; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Suda W; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan., Hattori M; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan., Sasajima S; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Matsunaga T; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan., Zhang X; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan., Watanabe K; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan., Fujishiro J; Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan., Norman JM; Vedanta Biosciences, Cambridge, MA, USA., Olle B; Vedanta Biosciences, Cambridge, MA, USA., Matsuyama S; Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan., Namkoong H; Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan., Uwamino Y; Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan., Ishii M; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan., Fukunaga K; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan., Hasegawa N; Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan., Ohara O; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.; Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan., Xavier RJ; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. xavier@molbio.mgh.harvard.edu.; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. xavier@molbio.mgh.harvard.edu.; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. xavier@molbio.mgh.harvard.edu., Atarashi K; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. kojiatarashi@keio.jp.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan. kojiatarashi@keio.jp.; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan. kojiatarashi@keio.jp., Honda K; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. kenya@keio.jp.; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan. kenya@keio.jp.; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan. kenya@keio.jp.
المصدر: Nature [Nature] 2022 Sep; Vol. 609 (7927), pp. 582-589. Date of Electronic Publication: 2022 Sep 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Gastrointestinal Microbiome*/genetics , Intestine, Large*/metabolism , Intestine, Large*/microbiology , Symbiosis* , Trypsin*/metabolism, Administration, Oral ; Animals ; Bacterial Secretion Systems ; Bacterial Vaccines/administration & dosage ; Bacterial Vaccines/immunology ; Bacteroidetes/isolation & purification ; Bacteroidetes/metabolism ; COVID-19/complications ; Citrobacter rodentium/immunology ; Diarrhea/complications ; Feces/microbiology ; Humans ; Immunoglobulin A/metabolism ; Mice ; Murine hepatitis virus/metabolism ; Murine hepatitis virus/pathogenicity ; Proteolysis ; SARS-CoV-2/pathogenicity ; Virus Internalization
مستخلص: Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions 1-3 . However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells 4,5 . Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.
(© 2022. The Author(s).)
References: Hansen, K. K. et al. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc. Natl Acad. Sci. USA 102, 8363–8368 (2005). (PMID: 15919826114940910.1073/pnas.0409535102)
Midtvedt, T. et al. Increase of faecal tryptic activity relates to changes in the intestinal microbiome: analysis of Crohn’s disease with a multidisciplinary platform. PLoS ONE 8, e66074 (2013). (PMID: 23840402368870610.1371/journal.pone.0066074)
Jablaoui, A. et al. Fecal serine protease profiling in inflammatory bowel diseases. Front. Cell. Infect. Microbiol. 10, 21 (2020). (PMID: 32117798701118010.3389/fcimb.2020.00021)
Matsuyama, S. & Taguchi, F. Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. J. Virol. 83, 11133–11141 (2009). (PMID: 19706706277276510.1128/JVI.00959-09)
Qiu, Z. et al. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J. Virol. 80, 5768–5776 (2006). (PMID: 16731916147256710.1128/JVI.00442-06)
Carroll, I. M. et al. Fecal protease activity is associated with compositional alterations in the intestinal microbiota. PLoS ONE 8, e78017 (2013). (PMID: 24147109379837710.1371/journal.pone.0078017)
Cenac, N. et al. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol. 161, 1903–1915 (2002). (PMID: 12414536185077910.1016/S0002-9440(10)64466-5)
Guo, C.-J. et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168, 517–526 (2017). (PMID: 28111075530209210.1016/j.cell.2016.12.021)
Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011). (PMID: 2167774610.1038/nature10208)
Qin, X. Inactivation of digestive proteases by deconjugated bilirubin: the possible evolutionary driving force for bilirubin or biliverdin predominance in animals. Gut 56, 1641–1642 (2007). (PMID: 17938442209564610.1136/gut.2007.132076)
Skelly, A. N., Sato, Y., Kearney, S. & Honda, K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat. Rev. Immunol. 19, 305–323 (2019). (PMID: 3085849410.1038/s41577-019-0144-5)
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009). (PMID: 19343057409577810.1038/nri2515)
Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2020).
Kawashima, Y. et al. Optimization of data-independent acquisition mass spectrometry for deep and highly sensitive proteomic analysis. Int. J. Mol. Sci. 20, 5932 (2019). (PMID: 692871510.3390/ijms20235932)
Norin, K. E., Gustafsson, B. & Midtvedt, T. Strain differences in faecal tryptic activity of germ-free and conventional rats. Lab. Anim. 20, 67–69 (1986). (PMID: 395119610.1258/002367786781062188)
Genell, S., Gustafsson, B. & Ohlsson, K. Quantitation of active pancreatic endopeptidases in the intestinal contents of germfree and conventional rats. Scand. J. Gastroenterol. 11, 757–762 (1976). (PMID: 100614910.1080/00365521.1976.12097184)
Norin, K., Midtvedt, T. & Gustafsson, B. Influence of intestinal microflora on the tryptic activity during lactation in rats. Lab. Anim. 20, 234–237 (1986). (PMID: 379586110.1258/002367786780865656)
Bohe, M., Borgström, A., Genell, S. & Ohlsson, K. Determination of immunoreactive trypsin, pancreatic elastase and chymotrypsin in extracts of human feces and ileostomy drainage. Digestion 27, 8–15 (1983). (PMID: 655420610.1159/000198913)
Ramare, F., Hautefort, I., Verhe, F., Raibaud, P. & Iovanna, J. Inactivation of tryptic activity by a human-derived strain of Bacteroides distasonis in the large intestines of gnotobiotic rats and mice. Appl. Environ. Microbiol. 62, 1434–1436 (1996). (PMID: 891980716791210.1128/aem.62.4.1434-1436.1996)
Borgström, A., Genell, S. & Ohlsson, K. Elevated fecal levels of endogenous pancreatic endopeptidases after antibiotic treatment. Scand. J. Gastroenterol. 12, 525–529 (1977). (PMID: 91854610.3109/00365527709181329)
Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int. J. Syst. Evol. Microbiol. 59, 1895–1900 (2009). (PMID: 1956757710.1099/ijs.0.008169-0)
Coyne, M. J. et al. Phylum‐wide general protein O‐glycosylation system of the Bacteroidetes. Mol. Microbiol. 88, 772–783 (2013). (PMID: 23551589365650210.1111/mmi.12220)
Fletcher, C. M., Coyne, M. J., Villa, O. F., Chatzidaki-Livanis, M. & Comstock, L. E. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 137, 321–331 (2009). (PMID: 19379697277205910.1016/j.cell.2009.02.041)
Al-Dabbagh, B., Mengin-Lecreulx, D. & Bouhss, A. Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J. Bacteriol. 190, 7141–7146 (2008). (PMID: 18723618258070010.1128/JB.00676-08)
Gorasia, D. G. et al. Porphyromonas gingivalis type IX secretion substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog. 11, e1005152 (2015). (PMID: 26340749456039410.1371/journal.ppat.1005152)
Shoji, M. et al. Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. Microbiology 148, 1183–1191 (2002). (PMID: 1193246210.1099/00221287-148-4-1183)
Rangarajan, M., Aduse‐Opoku, J., Paramonov, N., Hashim, A. & Curtis, M. Hemin binding by Porphyromonas gingivalis strains is dependent on the presence of A‐LPS. Mol. Oral Microbiol. 32, 365–374 (2017). (PMID: 28107612560013710.1111/omi.12178)
Lasica, A. M., Ksiazek, M., Madej, M. & Potempa, J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7, 215 (2017). (PMID: 28603700544513510.3389/fcimb.2017.00215)
Veith, P. D., Glew, M. D., Gorasia, D. G. & Reynolds, E. C. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol. Microbiol. 106, 35–53 (2017). (PMID: 2871455410.1111/mmi.13752)
Moor, K. et al. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 7, 34 (2016). (PMID: 26904024474969910.3389/fimmu.2016.00034)
Matsuyama, S. et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658–12664 (2010). (PMID: 20926566300435110.1128/JVI.01542-10)
Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020). (PMID: 32221306710051510.1038/s41467-020-15562-9)
Jaimes, J. A., Millet, J. K. & Whittaker, G. R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23, 101212 (2020). (PMID: 32512386725572810.1016/j.isci.2020.101212)
Xia, S. et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct. Target. Ther. 5, 92 (2020). (PMID: 32532959728971110.1038/s41392-020-0184-0)
Afar, D. E. et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res. 61, 1686–1692 (2001). (PMID: 11245484)
Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257 (2020). (PMID: 32544460743568810.1016/j.chom.2020.05.013)
Efimov, B. A. et al. Prevotella rara sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 68, 3818–3825 (2018). (PMID: 3033911710.1099/ijsem.0.003066)
Ndongo, S., Lagier, J.-C., Fournier, P.-E., Raoult, D. & Khelaifia, S. “Prevotellamassilia timonensis,” a new bacterial species isolated from the human gut. New Microbes New Infect. 13, 102–103 (2016). (PMID: 27570628499056810.1016/j.nmni.2016.06.014)
Gálvez, E. J. et al. Distinct polysaccharide utilization determines interspecies competition between intestinal Prevotella spp. Cell Host Microbe 28, 838–852 (2020). (PMID: 3311335110.1016/j.chom.2020.09.012)
Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019). (PMID: 3067506410.1038/s41586-019-0878-z)
Amodei, D. et al. Improving precursor selectivity in data-independent acquisition using overlapping windows. J. Am. Soc. Mass. Spectrom. 30, 669–684 (2019). (PMID: 30671891644582410.1007/s13361-018-2122-8)
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010). (PMID: 20147306284499210.1093/bioinformatics/btq054)
Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 16, 509–518 (2019). (PMID: 3113376010.1038/s41592-019-0426-7)
Searle, B. C. et al. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat. Commun. 11, 1548 (2020). (PMID: 32214105709643310.1038/s41467-020-15346-1)
Searle, B. C. et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat. Commun. 9, 5128 (2018). (PMID: 30510204627745110.1038/s41467-018-07454-w)
Kawashima, Y. et al. High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. J. Proteome Res. 9, 1694–1705 (2010). (PMID: 2018437810.1021/pr9008018)
Konno, R. et al. Highly accurate and precise quantification strategy using stable isotope dimethyl labeling coupled with GeLC-MS/MS. Biochem. Biophys. Res. Commun. 550, 37–42 (2021). (PMID: 3368461810.1016/j.bbrc.2021.02.101)
Nishijima, S. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23, 125–133 (2016). (PMID: 26951067483342010.1093/dnares/dsw002)
Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015). (PMID: 26411289476595410.1016/j.cell.2015.08.058)
Sugimoto, S. et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 22, 171–176 (2018). (PMID: 2929061610.1016/j.stem.2017.11.012)
Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011). (PMID: 2188992310.1053/j.gastro.2011.07.050)
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019). (PMID: 3053197610.1038/s41564-018-0306-4)
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). (PMID: 31142855665027810.1038/s41586-019-1237-9)
Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136. e1128 (2016). (PMID: 27814509513192210.1016/j.cell.2016.10.020)
Kurilshikov, A. et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk: a cross-sectional study. Circ. Res. 124, 1808–1820 (2019). (PMID: 3097118310.1161/CIRCRESAHA.118.314642)
Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017). (PMID: 29018189563503010.1038/s41467-017-00900-1)
Plaza Oñate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 35, 1544–1552 (2019). (PMID: 3025202310.1093/bioinformatics/bty830)
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). (PMID: 2070969110.1093/bioinformatics/btq461)
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2020).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). (PMID: 3288110110.1002/pro.3943)
Namkoong, H. et al. DOCK2 is involved in the host genetics and biology of severe COVID-19. Nature https://doi.org/10.1038/s41586-022-05163-5 (2022).
González-Domínguez, J. & Schmidt, B. ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32, 1562–1564 (2016). (PMID: 2680315910.1093/bioinformatics/btw038)
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). (PMID: 30423086612928110.1093/bioinformatics/bty560)
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). (PMID: 29750242613799610.1093/bioinformatics/bty191)
معلومات مُعتمدة: P30 DK043351 United States DK NIDDK NIH HHS; R01 AT009708 United States AT NCCIH NIH HHS
المشرفين على المادة: 0 (Bacterial Secretion Systems)
0 (Bacterial Vaccines)
0 (Immunoglobulin A)
EC 3.4.21.4 (Trypsin)
تواريخ الأحداث: Date Created: 20220907 Date Completed: 20220919 Latest Revision: 20220930
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9477747
DOI: 10.1038/s41586-022-05181-3
PMID: 36071157
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05181-3