دورية أكاديمية

Molecular Features of Preinvasive and Invasive Vulvar Neoplasms.

التفاصيل البيبلوغرافية
العنوان: Molecular Features of Preinvasive and Invasive Vulvar Neoplasms.
المؤلفون: Deb PQ; Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark NJ., Heller DS
المصدر: Journal of lower genital tract disease [J Low Genit Tract Dis] 2023 Jan 01; Vol. 27 (1), pp. 40-46. Date of Electronic Publication: 2022 Sep 09.
نوع المنشور: Journal Article; Systematic Review
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 9704963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-0976 (Electronic) Linking ISSN: 10892591 NLM ISO Abbreviation: J Low Genit Tract Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: Malden, MA : Blackwell Science Inc., c1997-
مواضيع طبية MeSH: Carcinoma, Squamous Cell*/pathology , Melanoma* , Papillomavirus Infections* , Skin Neoplasms* , Vulvar Neoplasms*/pathology, Female ; Humans ; Human Papillomavirus Viruses ; Phosphatidylinositol 3-Kinases ; Proto-Oncogene Proteins c-akt
مستخلص: Objectives: Neoplasms arising from the vulva are uncommon and comprise various subtypes. Given the recent advancements in the molecular aspects of oncologic pathology and how they have impacted cancer treatment, an understanding of recent innovations in the molecular features of vulvar lesions is important.
Materials and Methods: Systematic literature search was performed on PubMed, Google Scholar, and Scopus databases for molecular and genetic characteristics of vulvar neoplasms. Peer-reviewed literature published in English is included.
Results: Squamous cell carcinoma (SCC) and its precursors are the predominant neoplasm at this site. Human papillomavirus (HPV) plays a crucial role in the pathogenesis of some of these lesions. Human papillomavirus-associated SCC follows the carcinogenic pathway driven by viral proteins E6 and E7 while HPV-independent SCC shows a high incidence of mutation of TP53 and CDKN2A genes. Mutations in the genes involving the PI3K-Akt pathway play an important role in the pathogenesis of both types of SCC. Among other vulvar malignancies, melanoma, and vulvar Paget disease (VPD) pose a significant clinical challenge and have unique molecular characteristics. Compared with dermal cutaneous melanoma, vulvar melanoma shows a higher rate of mutation of cKIT and NRAS genes and a lower rate of mutations in BRAF . Less than 20% of VPD shows amplification of ERBB2 and seldom shows mutation in genes involving the PI3K-Akt pathway.
Conclusions: Several potentially targetable molecular pathways have emerged as they have been shown to be involved in the tumorigenesis of SCC, melanoma, and VPD.
Competing Interests: The authors have declared they have no conflicts of interest.
(Copyright © 2022, ASCCP.)
References: Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7–33.
Board WHOCoTE. Female Genital Tumours . Medicine Series. International Agency for Research on Cancer; WHO Classification of Tumours, 5th Edition. 2020:4.
Yin S, Xu L, Wang S, et al. Prevalence of extramammary Paget's disease in urban China: a population-based study. Orphanet J Rare Dis 2021;16:134.
van der Zwan JM, Siesling S, Blokx WAM, et al. Invasive extramammary Paget's disease and the risk for secondary tumours in Europe. Eur J Surg Oncol 2012;38:214–21.
El-Khoury J, Renald MH, Plantier F, et al. Vulvar hidradenoma papilliferum (HP) is located on the sites of mammary-like anogenital glands (MLAGs): analysis of the photographs of 52 tumors. J Am Acad Dermatol 2016;75:380–4.
Pfarr N, Sinn HP, Klauschen F, et al. Mutations in genes encoding PI3K-AKT and MAPK signaling define anogenital papillary hidradenoma. Genes Chromosomes Cancer 2016;55:113–9.
Pfarr N, Allgäuer M, Steiger K, et al. Several genotypes, one phenotype: PIK3CA/AKT1 mutation-negative hidradenoma papilliferum show genetic lesions in other components of the signalling network. Pathology 2019;51:362–8.
Goto K, Maeda D, Kudo-Asabe Y, et al. PIK3CA and AKT1 mutations in hidradenoma papilliferum. J Clin Pathol 2017;70:424–7.
Rock B. Pigmented lesions of the vulva. Dermatol Clin 1992;10:361–70.
Rock B, Hood AF, Rock JA. Prospective study of vulvar nevi. JAAD 1990;22:104–6.
Tseng D, Kim J, Warrick A, et al. Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract. JAAD 2014;71:229–36.
Polubothu S, McGuire N, Al-Olabi L, et al. Does the gene matter? Genotype-phenotype and genotype-outcome associations in congenital melanocytic naevi. Br J Dermatol 2020;182:434–43.
Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009;457:599–602.
Yélamos O, Merkel EA, Sholl LM, et al. Nonoverlapping clinical and mutational patterns in melanomas from the female genital tract and atypical genital nevi. J Invest Dermatol 2016;136:1858–65.
Bornstein J, Bogliatto F, Haefner HK, et al. The 2015 International Society for the Study of Vulvovaginal Disease (ISSVD) terminology of vulvar squamous intraepithelial lesions. J Low Genit Tract Dis 2016;20:11–4.
Joura EA, Lösch A, Haider-Angeler MG, et al. Trends in vulvar neoplasia. Increasing incidence of vulvar intraepithelial neoplasia and squamous cell carcinoma of the vulva in young women. J Reprod Med 2000;45:613–5.
de Sanjosé S, Alemany L, Ordi J, et al. Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. Eur J Cancer 2013;49:3450–61.
Tessier-Cloutier B, Pors J, Thompson E, et al. Molecular characterization of invasive and in situ squamous neoplasia of the vulva and implications for morphologic diagnosis and outcome. Mod Pathol 2021;34:508–18.
Santos M, Montagut C, Mellado B, et al. Immunohistochemical staining for p16 and p53 in premalignant and malignant epithelial lesions of the vulva. Int J Gynecol Pathol 2004;23:206–14.
Singh N, Leen SL, Han G, et al. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss. Am J Surg Pathol 2015;39:52–60.
Dasgupta S, Ewing-Graham PC, Swagemakers SMA, et al. Precursor lesions of vulvar squamous cell carcinoma—histology and biomarkers: a systematic review. Crit Rev Oncol Hematol 2020;147:102866.
Swarts DRA, Voorham QJM, van Splunter AP, et al. Molecular heterogeneity in human papillomavirus-dependent and-independent vulvar carcinogenesis. Cancer Med 2018;7:4542–53.
Akbari A, Pinto A, Amemiya Y, et al. Differentiated exophytic vulvar intraepithelial lesion: clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020;33:2011–8.
Nooij LS, Ter Haar NT, Ruano D, et al. Genomic characterization of vulvar (pre)cancers identifies distinct molecular subtypes with prognostic significance. Clin Cancer Res 2017;23:6781–9.
Chulvis do Val IC, Almeida Filho GL, Valiante PM, et al. Vulvar intraepithelial neoplasia p53 expression, p53 gene mutation and HPV in recurrent/progressive cases. J Reprod Med 2004;49:868–74.
Watkins JC, Howitt BE, Horowitz NS, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. Mod Pathol 2017;30:448–58.
Nascimento AF, Granter SR, Cviko A, et al. Vulvar acanthosis with altered differentiation: a precursor to verrucous carcinoma? Am J Surg Pathol May 2004;28:638–43. doi:10.1097/00000478-200405000-00012. (PMID: 10.1097/00000478-200405000-00012)
Wilkinson EJ, Brown HM. Vulvar Paget disease of urothelial origin: a report of three cases and a proposed classification of vulvar Paget disease. Hum Pathol 2002;33:549–54.
Hatta N, Yamada M, Hirano T, et al. Extramammary Paget's disease: treatment, prognostic factors and outcome in 76 patients. Br J Dermatol 2008;158:313–8.
van der Linden M, Oonk MHM, van Doorn HC, et al. Vulvar Paget disease: a national retrospective cohort study. J Am Acad Dermatol 2019;81:956–62.
Preti M, Micheletti L, Borella F, et al. Vulvar Paget's disease and stromal invasion: clinico-pathological features and survival outcomes. Surg Oncol 2021;38:101581.
Garganese G, Inzani F, Mantovani G, et al. The vulvar immunohistochemical panel (VIP) project: molecular profiles of vulvar Paget's disease. J Canc Res Clin Oncol 2019;145:2211–25.
Horn L-C, Purz S, Krumpe C, et al. COX-2 and Her-2/neu are overexpressed in Paget's disease of the vulva and the breast: results of a preliminary study. Arch gyn obs 2008;277:135–8.
Reich O, Liegl B, Tamussino K, et al. p185HER2 overexpression and HER2 oncogene amplification in recurrent vulvar Paget's disease. Mod Pathol 2005;18:354–7.
Kang Z, Xu F, Zhang QA, et al. Oncogenic mutations in extramammary Paget's disease and their clinical relevance. Int J Cancer 2013;132:824–31.
Rakislova N, Alemany L, Clavero O, et al. HPV-independent precursors mimicking high-grade squamous intraepithelial lesions (HSIL) of the vulva. Am J Surg Pathol 2020;44:1506–14.
Elster N, Cremona M, Morgan C, et al. A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Breast Cancer Res Treat 2015;149:373–83.
Borella F, Preti M, Vieira-Baptista P, et al. Vulvar Paget's disease: outcomes of 51 patients treated with imiquimod cream. Maturitas 2022;163:23–7.
van der Linden M, van Hees CL, van Beurden M, et al. The Paget Trial: topical 5% imiquimod cream for noninvasive vulvar Paget disease. Am J Obstet Gynecol 2022;227:250.e1–8.
Konstantinova AM, Shelekhova KV, Imyanitov EN, et al. Study of selected BRCA1, BRCA2, and PIK3CA mutations in benign and malignant lesions of anogenital mammary–like glands. Am J Dermatopathol 2017;39:358–62.
Lee MW, Jee KJ, Gong GY, et al. Comparative genomic hybridization in extramammary Paget's disease. Br J Dermatol 2005;153:290–4.
Karpathiou G, Chauleur C, Hathroubi S, et al. Expression of CD3, PD-L1 and CTLA-4 in mammary and extra-mammary Paget disease. Cancer Immunol Immunother 2018;67:1297–303.
Mauzo SH, Tetzlaff MT, Milton DR, et al. Expression of PD-1 and PD-L1 in extramammary paget disease: implications for immune-targeted therapy. Cancers (Basel) 2019;11. doi:10.3390/cancers11060754. (PMID: 10.3390/cancers11060754)
Pourmaleki M, Young JH, Socci ND, et al. Extramammary Paget disease shows differential expression of B7 family members B7-H3, B7-H4, PD-L1, PD-L2 and cancer/testis antigens NY-ESO-1 and MAGE-A. Oncotarget 2019;10:6152–67.
Kawaguchi A, Akiba J, Kondo R, et al. Programmed death-ligand 1 and programmed death-ligand 2 expression can affect prognosis in extramammary Paget's disease. Anticancer Res 2021;41:219–26.
Mantovani G, Fagotti A, Franchi M, et al. Reviewing vulvar Paget's disease molecular bases. Looking forward to personalized target therapies: a matter of CHANGE. Int J Gynecol Cancer 2019;29:422–429.
Rakislova N, Clavero O, Alemany L, et al. Histological characteristics of HPV-associated and -independent squamous cell carcinomas of the vulva: a study of 1,594 cases. Int J Cancer 2017;141:2517–27.
Prieske K, Alawi M, Oliveira-Ferrer L, et al. Genomic characterization of vulvar squamous cell carcinoma. Gynecol Oncol 2020;158:547–54.
Xing D, Liu Y, Park HJ, et al. Recurrent genetic alterations and biomarker expression in primary and metastatic squamous cell carcinomas of the vulva. Hum Pathol 2019;92:67–80.
Choschzick M, Hantaredja W, Tennstedt P, et al. Role of TP53 mutations in vulvar carcinomas. Int J Gynecol Pathol 2011;30:497–504.
Weberpals JI, Lo B, Duciaume MM, et al. Vulvar squamous cell carcinoma (VSCC) as two diseases: HPV status identifies distinct mutational profiles including oncogenic fibroblast growth factor receptor 3. Clin Cancer Res 2017;23:4501–10.
Allo G, Yap ML, Cuartero J, et al. HPV-independent vulvar squamous cell carcinoma is associated with significantly worse prognosis compared with hpv-associated tumors. Int J Gynecol Cancer 2020;39:391–9.
Lee LJ, Howitt B, Catalano P, et al. Prognostic importance of human papillomavirus (HPV) and p16 positivity in squamous cell carcinoma of the vulva treated with radiotherapy. Gynecol Oncol 2016;142:293–8.
McAlpine JN, Leung SCY, Cheng A, et al. Human papillomavirus (HPV)-independent vulvar squamous cell carcinoma has a worse prognosis than HPV-associated disease: a retrospective cohort study. Histopathology 2017;71:238–46.
McCluggage WG. Recent developments in vulvovaginal pathology. Histopathology 2009;54:156–73.
Proctor L, Hoang L, Moore J, et al. Association of human papilloma virus status and response to radiotherapy in vulvar squamous cell carcinoma. Int J Gynecol Cancer 2020;30:100–6.
Kortekaas KE, Bastiaannet E, van Doorn HC, et al. Vulvar cancer subclassification by HPV and p53 status results in three clinically distinct subtypes. Gynecol Oncol 2020;159:649–56.
Goldstein AT, Metz A. Vulvar lichen planus. Clin Obstet Gynecol 2005;48:818–23.
Mauskar M. Erosive lichen planus. Obstet Gynecol Clin North Am 2017;44:407–20.
Day T, Otton G, Jaaback K, et al. Is vulvovaginal lichen planus associated with squamous cell carcinoma? J Low Genit Tract Dis 2018;22:159–65.
Rolfe KJ, MacLean AB, Crow JC, et al. TP53 mutations in vulval lichen sclerosus adjacent to squamous cell carcinoma of the vulva. Br J Cancer 2003;89:2249–53.
Tapp RA, Feng J, Jones JW, et al. Single base instability is promoted in vulvar lichen sclerosus. J Invest Dermatol 2007;127:2563–76.
Xing D, Fadare O. Molecular events in the pathogenesis of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021;38:50–61.
Bleeker MCG, Visser PJ, Overbeek LIH, et al. Lichen sclerosus: incidence and risk of vulvar squamous cell carcinoma. CEBP 2016;25:1224–30.
Regauer S, Kashofer K, Reich O. Time series analysis of TP53 gene mutations in recurrent HPV-negative vulvar squamous cell carcinoma. Mod Pathol 2019;32:415–22.
Ho RT, Salim KY, Lindemann A, et al. COTI-2, a potent orally available small molecule targeting mutant p53, with promising efficacy as monotherapy and combination treatment in preclinical tumor models. J Clin Oncol 2018;36:6040–0.
Williams EA, Werth AJ, Sharaf R, et al. Vulvar squamous cell carcinoma: comprehensive genomic profiling of HPV+ versus HPV− forms reveals distinct sets of potentially actionable molecular targets. JCO Precis Oncol 2020;4. doi:10.1200/po.19.00406. (PMID: 10.1200/po.19.00406)
Trietsch MD, Spaans VM, ter Haar NT, et al. CDKN2A(p16) and HRAS are frequently mutated in vulvar squamous cell carcinoma. Gynecol Oncol 2014;135:149–55.
Leonard S, Pereira M, Fox R, et al. Over-expression of DNMT3A predicts the risk of recurrent vulvar squamous cell carcinomas. Gynecol Oncol 2016;143:414–20.
Zięba S, Kowalik A, Zalewski K, et al. Somatic mutation profiling of vulvar cancer: exploring therapeutic targets. Gynecol Oncol 2018;150:552–61.
Zięba S, Pouwer AW, Kowalik A, et al. Somatic mutation profiling in premalignant lesions of vulvar squamous cell carcinoma. Int J Mol Sci 2020;21:4880.
Holway AH, Rieger-Christ KM, Miner WR, et al. Somatic mutation of PTEN in vulvar cancer. Clin Cancer Res 2000;6:3228–35.
Rotondo JC, Borghi A, Selvatici R, et al. Association of retinoic acid receptor β gene with onset and progression of lichen sclerosus-associated vulvar squamous cell carcinoma. JAMA Dermatol 2018;154:819–23.
Rotondo JC, Borghi A, Selvatici R, et al. Hypermethylation-induced inactivation of the IRF6 gene as a possible early event in progression of vulvar squamous cell carcinoma associated with lichen sclerosus. JAMA Dermatol 2016;152:928–33.
Guerrero D, Guarch R, Ojer A, et al. Differential hypermethylation of genes in vulvar cancer and lichen sclerosus coexisting or not with vulvar cancer. Int J Cancer 2011;128:2853–64.
Li B, He Y, Han X, et al. Aberrant promoter methylation of SH3GL2 gene in vulvar squamous cell carcinoma correlates with clinicopathological characteristics and HPV infection status. Int J Clin Exp Pathol 2015;8:15442–7.
Oonk MH, Eijsink JJ, Volders HH, et al. Identification of inguinofemoral lymph node metastases by methylation markers in vulvar cancer. Gynecol Oncol 2012;125:352–7.
Chinn Z, Stoler MH, Mills AM. PD-L1 and IDO expression in cervical and vulvar invasive and intraepithelial squamous neoplasias: implications for combination immunotherapy. Histopathology 2019;74:256–68.
Sznurkowski JJ, Żawrocki A, Sznurkowska K, et al. PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients. Oncotarget 2017;8:89903–12.
Hecking T, Thiesler T, Schiller C, et al. Tumoral PD-L1 expression defines a subgroup of poor-prognosis vulvar carcinomas with non-viral etiology. Oncotarget 2017;8:92890–903.
Howitt BE, Sun HH, Roemer MG, et al. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol 2016;2:518–22.
Dibbern ME, Bullock TN, Jenkins TM, et al. Loss of MHC class I expression in HPV-associated cervical and vulvar neoplasia: a potential mechanism of resistance to checkpoint inhibition. Am J Surg Pathol 2020;44:1184–91.
Cocks M, Chaux A, Jenson EG, et al. Immune checkpoint status and tumor microenvironment in vulvar squamous cell carcinoma. Virchows Arch 2020;477:93–102.
Thangarajah F, Morgenstern B, Pahmeyer C, et al. Clinical impact of PD-L1 and PD-1 expression in squamous cell cancer of the vulva. J Cancer Res Clin Oncol 2019;145:1651–60.
Garganese G, Inzani F, Fragomeni SM, et al. The vulvar immunohistochemical panel (Vip) project: molecular profiles of vulvar squamous cell carcinoma. Cancer 2021;13:6373.
Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 2019;37:318–27.
Shields LBE, Gordinier ME. Pembrolizumab in recurrent squamous cell carcinoma of the vulva: case report and review of the literature. Gynecol Obstet Invest 2019;84:94–8.
Naumann RW, Hollebecque A, Meyer T, et al. Safety and efficacy of nivolumab monotherapy in recurrent or metastatic cervical, vaginal, or vulvar carcinoma: results from the Phase I/II CheckMate 358 Trial. J Clin Oncol 2019;37:2825–34.
Yeku O, Russo AL, Lee H, et al. A phase 2 study of combined chemo-immunotherapy with cisplatin-pembrolizumab and radiation for unresectable vulvar squamous cell carcinoma. J Transl Med 2020;18:350.
Borella F, Preti M, Bertero L, et al. Is there a place for immune checkpoint inhibitors in vulvar neoplasms? A state of the art review. Int J Mol Sci 2020;22:190.
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020;21:1353–65.
Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the Phase II KEYNOTE-158 Study. J Clin Oncol 2020;38:1–10.
Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731–9.
Hong DS, Bauer TM, Lee JJ, et al. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study. Ann Oncol 2019;30:325–31.
Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 2020;21:271–82.
Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature 2007;445:851–7.
Baetz TD, Fletcher GG, Knight G, et al. Systemic adjuvant therapy for adult patients at high risk for recurrent melanoma: a systematic review. Cancer Treat Rev 2020;87:87102032.
Blum A, Beck-Zoul U, Held L, et al. Dermoscopic appearance of an amelanotic mucosal melanoma. Dermatol Pract Concept 2016;6:23–5.
Broach V, Abu-Rustum NR, Sonoda Y, et al. Evolution and outcomes of sentinel lymph node mapping in vulvar cancer. Int J Gynecol Cancer 2020;30:383–6.
Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011;305:2327–34.
Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011;29:2904–9.
Hieta N, Kurki S, Rintala M, et al. Association of vulvar melanoma with lichen sclerosus. Acta Derm Venereol 2019;99:339–40.
Resende FS, Conforti C, Giuffrida R, et al. Raised vulvar lesions: be aware! Dermatol Pract Concept 2018;8:158–61.
Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015;372:30–9.
Saleh B, Kriegsmann J, Falk S, et al. Frequent PD-L1 expression in malignant melanomas of the vulva. Int J Gynecol Pathol 2018;37:477–81.
Shi K, Zhang B, Kong BY, et al. Distinct genomic features in a retrospective cohort of mucosal, acral and vulvovaginal melanomas. J Am Acad Dermatol 2019.
Theillac C, Cinotti E, Malvehy J, et al. Evaluation of large clinically atypical vulvar pigmentation with RCM: atypical melanosis or early melanoma? J Eur Acad Dermatol Venereol 2019;33:84–92.
Vaccari S, Barisani A, Salvini C, et al. Thin vulvar melanoma: a challenging diagnosis. Dermoscopic features of a case series. Clin Exp Dermatol 2020;45:187–93.
Willmore-Payne C, Holden JA, Tripp S, et al. Human malignant melanoma: detection of BRAF- and c-Kit–activating mutations by high-resolution amplicon melting analysis. Hum Pathol 2005;36:486–93.
Wylomanski S, Denis MG, Théoleyre S, et al. BRAF mutations might be more common than supposed in vulvar melanomas. Exp Dermatol 2018;27:210–3.
Zarei S, Voss JS, Jin L, et al. Mutational profile in vulvar, vaginal, and urethral melanomas: review of 37 cases with focus on primary tumor site. Int J Gynecol Pathol 2020;39:587–94.
Carbó-Bagué A, Rubió-Casadevall J, Puigdemont M, et al. Epidemiology and molecular profile of mucosal melanoma: a population-based study in Southern Europe. Cancer 2022;14:780.
Aulmann S, Sinn HP, Penzel R, et al. Comparison of molecular abnormalities in vulvar and vaginal melanomas. Mod Pathol 2014;27:1386–93.
Udager AM, Frisch NK, Hong LJ, et al. Gynecologic melanomas: a clinicopathologic and molecular analysis. Gynecol Oncol 2017;147:351–7.
Fedorenko IV, Paraiso KHT, Smalley KSM. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol 2011;82:201–9.
Gibney GT, Messina JL, Fedorenko IV, et al. Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol 2013;10:390–9.
Kalinsky K, Lee S, Rubin KM, et al. A phase 2 trial of dasatinib in patients with locally advanced or stage IV mucosal, acral, or vulvovaginal melanoma: a trial of the ECOG-ACRIN Cancer Research Group (E2607). Cancer 2017;123:2688–97.
Furlan K, Rohra P, Mir F, et al. Non-human-papillomavirus–related malignancies of the vulva: a clinicopathological study. J Cutan Pathol 2020;47:917–22.
D'Angelo SP, Larkin J, Sosman JA, et al. Efficacy and safety of nivolumab alone or in combination with ipilimumab in patients with mucosal melanoma: a pooled analysis. J Clin Oncol 2017;35:226–35.
المشرفين على المادة: EC 2.7.1.- (Phosphatidylinositol 3-Kinases)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
تواريخ الأحداث: Date Created: 20220909 Date Completed: 20221223 Latest Revision: 20221223
رمز التحديث: 20231215
DOI: 10.1097/LGT.0000000000000701
PMID: 36083687
قاعدة البيانات: MEDLINE
الوصف
تدمد:1526-0976
DOI:10.1097/LGT.0000000000000701