دورية أكاديمية

Ecological biomechanics of damage to macroalgae.

التفاصيل البيبلوغرافية
العنوان: Ecological biomechanics of damage to macroalgae.
المؤلفون: Burnett NP; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States., Koehl MAR; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States.
المصدر: Frontiers in plant science [Front Plant Sci] 2022 Aug 25; Vol. 13, pp. 981904. Date of Electronic Publication: 2022 Aug 25 (Print Publication: 2022).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: Macroalgae provide food and habitat to a diversity of organisms in marine systems, so structural damage and breakage of thallus tissue can have important ecological consequences for the composition and dynamics of marine communities. Common sources of macroalgal damage include breakage by hydrodynamic forces imposed by ambient water currents and waves, tissue consumption by herbivores, and injuries due to epibionts. Many macroalgal species have biomechanical designs that minimize damage by these sources, such as flexibly reconfiguring into streamlined shapes in flow, having either strong or extensible tissues that are tough, and having chemical and morphological defenses against herbivores and epibionts. If damage occurs, some macroalgae have tissue properties that prevent cracks from propagating or that facilitate tissue breakage in certain places, allowing the remainder of the thallus to survive. In contrast to these mechanisms of damage control, some macroalgae use breakage to aid dispersal, while others simply complete their reproduction prior to seasonally-predictable periods of damage (e.g., storm seasons). Once damage occurs, macroalgae have a variety of biomechanical responses, including increasing tissue strength, thickening support structures, or altering thallus shape. Thus, macroalgae have myriad biomechanical strategies for preventing, controlling, and responding to structural damage that can occur throughout their lives.
Competing Interests: The authors declare that this paper was written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2022 Burnett and Koehl.)
References: New Phytol. 2015 Apr;206(1):133-140. (PMID: 25413976)
Proc Biol Sci. 2020 May 13;287(1926):20200330. (PMID: 32345163)
J Exp Biol. 2016 Feb;219(Pt 3):383-91. (PMID: 26596529)
J Exp Biol. 2008 Nov;211(Pt 21):3433-41. (PMID: 18931316)
J Exp Biol. 2006 Jun;209(Pt 11):2170-81. (PMID: 16709919)
Am J Bot. 2015 Nov;102(11):1938-44. (PMID: 26546127)
J Exp Biol. 2009 Apr;212(Pt 7):961-76. (PMID: 19282493)
Oecologia. 2014 Mar;174(3):789-801. (PMID: 24100758)
Integr Comp Biol. 2008 Dec;48(6):834-51. (PMID: 21669836)
J Exp Biol. 2019 Feb 25;222(Pt 4):. (PMID: 30679240)
J Exp Biol. 2014 Apr 1;217(Pt 7):1167-74. (PMID: 24311812)
J Phycol. 2020 Feb;56(1):233-237. (PMID: 31609467)
Integr Comp Biol. 2020 Oct 1;60(4):820-828. (PMID: 32275745)
Mar Ecol Prog Ser. 2018;586:11-20. (PMID: 30505047)
Biol Bull. 2008 Dec;215(3):295-308. (PMID: 19098150)
Am J Bot. 2012 May;99(5):806-15. (PMID: 22523350)
J Exp Biol. 1999 Dec;202(Pt 23):3469-76. (PMID: 10562530)
J Phycol. 2013 Oct;49(5):811-5. (PMID: 27007306)
Oecologia. 2002 Jun;132(1):68-76. (PMID: 28547284)
Mar Environ Res. 2021 Jul;169:105330. (PMID: 33940312)
Ecology. 2009 Nov;90(11):3126-37. (PMID: 19967868)
Curr Biol. 2022 Jul 25;32(14):3154-3160.e3. (PMID: 35679870)
J Exp Biol. 2007 Jun;210(Pt 11):1874-84. (PMID: 17515414)
J Exp Bot. 2022 Feb 24;73(4):1104-1121. (PMID: 35199170)
J Phycol. 2020 Dec;56(6):1414-1427. (PMID: 32602559)
Ecology. 2016 Jul;97(7):1873-1886. (PMID: 27859169)
J Phycol. 2020 Feb;56(1):23-36. (PMID: 31642057)
J Exp Biol. 1997 Dec;200 (Pt 24):3141-64. (PMID: 9364022)
Oecologia. 1995 Jun;102(3):329-340. (PMID: 28306844)
Oecologia. 1986 Jun;69(3):420-428. (PMID: 28311345)
J Exp Biol. 2012 Mar 15;215(Pt 6):871. (PMID: 22357580)
Trends Ecol Evol. 2021 Sep;36(9):860-873. (PMID: 34218955)
J Phycol. 2022 Aug;58(4):603-611. (PMID: 35582822)
Integr Comp Biol. 2022 Apr 28;:. (PMID: 35482591)
J Exp Biol. 1994 Oct;195(1):381-410. (PMID: 9317997)
Am J Bot. 2006 Oct;93(10):1426-32. (PMID: 21642089)
Biofouling. 2008;24(6):427-38. (PMID: 18686057)
Biol Bull. 2021 Oct;241(2):168-184. (PMID: 34706205)
J Phycol. 2018 Feb;54(1):1-11. (PMID: 29072316)
J Exp Biol. 2006 May;209(Pt 9):1678-89. (PMID: 16621948)
J Exp Bot. 2021 May 4;72(10):3677-3687. (PMID: 33718962)
Biol Bull. 2001 Oct;201(2):126-35. (PMID: 11687385)
J Exp Biol. 2007 Jul;210(Pt 13):2213-30. (PMID: 17575028)
J Phycol. 2000 Jun;36(3):453-472. (PMID: 29544017)
فهرسة مساهمة: Keywords: breakage; drag; herbivory; hydrodynamics; material properties; strength; wounds
تواريخ الأحداث: Date Created: 20220912 Latest Revision: 20220913
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9452655
DOI: 10.3389/fpls.2022.981904
PMID: 36092422
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2022.981904