دورية أكاديمية

Crops' response to the emergent air pollutants.

التفاصيل البيبلوغرافية
العنوان: Crops' response to the emergent air pollutants.
المؤلفون: Shrestha RK; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Lamjung Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung, Nepal., Shi D; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China., Obaid H; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Department of Soil Science and Plant Nutrition, Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan., Elsayed NS; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Soil and Agricultural Chemistry Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt., Xie D; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China., Ni J; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.; Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China., Ni C; College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China. nichengsheg@swu.edu.cn.; Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China. nichengsheg@swu.edu.cn.; National Base of International S and T Collaboration On Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing, 400716, China. nichengsheg@swu.edu.cn.
المصدر: Planta [Planta] 2022 Sep 12; Vol. 256 (4), pp. 80. Date of Electronic Publication: 2022 Sep 12.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Air Pollutants* , Air Pollution*/adverse effects, Crops, Agricultural ; Soil
مستخلص: Main Conclusion: Consequences of air pollutants on physiology, biology, yield and quality in the crops are evident. Crop and soil management can play significant roles in attenuating the impacts of air pollutants. With rapid urbanization and industrialization, air pollution has emerged as a serious threat to quality crop production. Assessing the effect of the elevated level of pollutants on the performance of the crops is crucial. Compared to the soil and water pollutants, the air pollutants spread more rapidly to the extensive area. This paper has reviewed and highlighted the major findings of the previous research works on the morphological, physiological and biochemical changes in some important crops and fruits exposed to the increasing levels of air pollutants. The crop, soil and environmental factors governing the effect of air pollutants have been discussed. The majority of the observations suggest that the air pollutants alter the physiology and biochemical in the plants, i.e., while some pollutants are beneficial to the growth and yields and modify physiological and morphological processes, most of them appeared to be detrimental to the crop yields and their quality. A better understanding of the mechanisms of the uptake of air pollutants and crop responses is quite important for devising the measures ‒ at both policy and program levels ‒ to minimize their possible negative impacts on crops. Further research directions in this field have also been presented.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abdelhakim LOA, Palma CFF, Zhou R, Wollenweber B, Ottosen C-O, Rosenqvist E (2021) The effect of individual and combined drought and heat stress under elevated CO 2 on physiological responses in spring wheat genotypes. Plant Physiol Biochem 162:301–314. https://doi.org/10.1016/j.plaphy.2021.02.015. (PMID: 10.1016/j.plaphy.2021.02.01533714145)
Adaros G, Weigel HJ, Jäger HJ (1991) Concurrent exposure to SO 2 and/or NO 2 alters growth and yield responses of wheat and barley to low concentrations of O 3 . New Phytol 118(4):581–591. https://doi.org/10.1111/j.1469-8137.1991.tb00999.x. (PMID: 10.1111/j.1469-8137.1991.tb00999.x)
Agrawal M, Agrawal SB (1990) Effects of ozone exposure on enzymes and metabolites of nitrogen metabolism. Sci Hortic 43(1–2):169–177. https://doi.org/10.1016/0304-4238(90)90048-J. (PMID: 10.1016/0304-4238(90)90048-J)
Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: A case study. Environ Pollut 126(3):323–329. https://doi.org/10.1016/S0269-7491(03)00245-8. (PMID: 10.1016/S0269-7491(03)00245-812963293)
Ahmed S, Jabeen R, Johar S, Hameed M, Irfan S (2015) Effects of roadside dust pollution on fruit trees of miyyaghundi (Quetta) and ghanjdori (mastung), Pakistan. Int J Basic Appl Sci 5:38. https://doi.org/10.14419/ijbas.v5i1.5477. (PMID: 10.14419/ijbas.v5i1.5477)
Aien A, Pal M, Khetarpal S, Kumar Pandey S (2014) Impact of elevated atmospheric CO 2 concentration on the growth, and yield in two potato cultivars. J Agric Sci Technol 16(7):1661–1670. https://doi.org/10.5829/idosi.wasj.2013.24.04.2311. (PMID: 10.5829/idosi.wasj.2013.24.04.2311)
Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytol 165(2):351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x. (PMID: 10.1111/j.1469-8137.2004.01224.x15720649)
Aksu A (2015) Sources of metal pollution in the urban atmosphere (a case study: Tuzla, Istabul). J Environ Health Sci Eng 13:79–79. https://doi.org/10.1186/s40201-015-0224-9. (PMID: 10.1186/s40201-015-0224-9265872394652336)
Al Jassir MS, Shaker A, Khaliq MA (2005) Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh City. Saudi Arabia Bull Environ Contam Toxicol 75(5):1020–1027. https://doi.org/10.1007/s00128-005-0851-4. (PMID: 10.1007/s00128-005-0851-416400593)
Alberto A, Ziska L, Cervancia C, Manalo P (1996) The influence of increasing carbon dioxide and temperature on competitive interactions between a C 3 crop, rice (Oryza sativa) and a C 4 weed (Echinochloa glabrescens). Aust J Plant Physiol 23(6):795–802. https://doi.org/10.1071/PP9960795. (PMID: 10.1071/PP9960795)
Allahnouri M, Aghbash F, Pazhouhan I (2018) Traffic effects on leaf macro- and micro-morphological traits. Folia Oecologica 45:92–101. https://doi.org/10.2478/foecol-2018-0010. (PMID: 10.2478/foecol-2018-0010)
Alnusairi GSH, Mazrou YSA, Qari SH, Elkelish AA, Soliman MH, Eweis M, Abdelaal K, El-Samad GA, Ibrahim MFM, ElNahhas N (2021) Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants 10(8):1693. https://doi.org/10.3390/plants10081693. (PMID: 10.3390/plants10081693344517388400961)
Anbazhagan M, Krishnamurthy R, Bhagwat KA (1988) Proline: An enigmatic indicator of air pollution tolerance in rice cultivars. J Plant Physiol 133(1):122–123. https://doi.org/10.1016/S0176-1617(88)80098-1. (PMID: 10.1016/S0176-1617(88)80098-1)
Anten NPR, Hirose T, Onoda Y, Kinugasa T, Kim HY, Okada M, Kobayashi K (2004) Elevated CO 2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytol 161(2):459–471. https://doi.org/10.1046/j.1469-8137.2003.00943.x. (PMID: 10.1046/j.1469-8137.2003.00943.x33873518)
Antisari LV, Orsini F, Marchetti L, Vianello G, Gianquinto G (2015) Heavy metal accumulation in vegetables grown in urban gardens. Agron Sustain Dev 35(3):1139–1147. https://doi.org/10.1007/s13593-015-0308-z. (PMID: 10.1007/s13593-015-0308-z)
Araya T, Noguchi K, Terashima I (2010) Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. J Plant Res 123(3):371–379. https://doi.org/10.1007/s10265-009-0279-8. (PMID: 10.1007/s10265-009-0279-819953290)
Arshad A (2021) A growth and biochemistry of ten high yielding genotypes of Pakistani rice (Oryza sativa L.) at maturity under elevated tropospheric ozone. Heliyon 7(10):e08198. https://doi.org/10.1016/j.heliyon.2021.e08198. (PMID: 10.1016/j.heliyon.2021.e08198347294348545687)
Asadi M, Eshghizadeh HR (2021) Response of sorghum genotypes to water deficit stress under different CO 2 and nitrogen levels. Plant Physiol Biochem 158:255–264. https://doi.org/10.1016/j.plaphy.2020.11.010. (PMID: 10.1016/j.plaphy.2020.11.01033223387)
Atkinson CJ, Robe SV, Winner WE (1988) The relationship between changes in photosynthesis and growth for radish plants fumigated with SO 2 and O 3 . New Phytol 110(2):173–184. https://doi.org/10.1111/j.1469-8137.1988.tb00250.x. (PMID: 10.1111/j.1469-8137.1988.tb00250.x)
Becker C, Kläring HP (2016) CO 2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem 199:736–745. https://doi.org/10.1016/j.foodchem.2015.12.059. (PMID: 10.1016/j.foodchem.2015.12.05926776031)
Bennett JH, Hill AC (1973) Inhibition of apparent photosynthesis by air pollutants. J Environ Qual 2(4):526–530. https://doi.org/10.2134/jeq1973.00472425000200040029x. (PMID: 10.2134/jeq1973.00472425000200040029x)
Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33(9):1569–1581. https://doi.org/10.1111/j.1365-3040.2010.02165.x. (PMID: 10.1111/j.1365-3040.2010.02165.x20444212)
Bidwell RGS, Fraser DE (1972) Carbon monoxide uptake and metabolism by leaves. Can J Bot 50(7):1435–1439. https://doi.org/10.1139/b72-174?journalCode=cjb1. (PMID: 10.1139/b72-174?journalCode=cjb1)
Blandino M, Badeck F-W, Giordano D, Marti A, Rizza F, Scarpino V, Vaccino P (2020) Elevated CO2 impact on common wheat (Triticum aestivum L.) yield, wholemeal quality, and sanitary risk. J Agric Food Chem 68(39):10574–10585. https://doi.org/10.1021/acs.jafc.0c02975. (PMID: 10.1021/acs.jafc.0c02975328659998011921)
Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and arabidopsis. Science 328(5980):899. https://doi.org/10.1126/science.1186440. (PMID: 10.1126/science.118644020466933)
Boeckx T, Webster R, Winters AL, Webb KJ, Gay A, Kingston-Smith AH (2015) Polyphenol oxidase-mediated protection against oxidative stress is not associated with enhanced photosynthetic efficiency. Ann Bot 116(4):529–540. https://doi.org/10.1093/aob/mcv081. (PMID: 10.1093/aob/mcv081260417334577998)
Booker FL, Fiscus EL (2005) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO 2 in soybean. J Exp Bot 56(418):2139–2151. https://doi.org/10.1093/jxb/eri214. (PMID: 10.1093/jxb/eri21415983015)
Bourgeois I, Peischl J, Neuman JA, Brown SS, Thompson CR, Aikin KC, Allen HM, Angot H, Apel EC, Baublitz CB, Brewer JF, Campuzano-Jost P, Commane R, Crounse JD, Daube BC, DiGangi JP, Diskin GS, Emmons LK, Fiore AM, Gkatzelis GI, Hills A, Hornbrook RS, Huey LG, Jimenez JL, Kim M, Lacey F, McKain K, Murray LT, Nault BA, Parrish DD, Ray E, Sweeney C, Tanner D, Wofsy SC, Ryerson TB (2021) Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proc Natl Acad Sci 118(52):e2109628118. https://doi.org/10.1073/pnas.2109628118. (PMID: 10.1073/pnas.2109628118349308388719870)
Calatayud A, Alvarado JW, Barreno E (2002) Similar effects of ozone on four cultivars of lettuce in open top chambers during winter. Photosynthetica 40(2):195–200. https://doi.org/10.1023/A:1021333305592. (PMID: 10.1023/A:1021333305592)
Cao H (1989) Air pollution and its effects on plants in China. J Appl Ecol 26(3):763–773. (PMID: 10.2307/2403688)
Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA (2017) A decade of global volcanic SO 2 emissions measured from space. Sci Rep 7(1):44095. https://doi.org/10.1038/srep44095. (PMID: 10.1038/srep44095282752385343458)
Center NER (1973) Effects of sulfur oxides in the atmosphere on vegetation; revised chapter 5 for air quality criteria for sulfur oxides. National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, N.C.
Chandra N, Pandey N (2014) Influence of sulfur induced stress on oxidative status and antioxidative machinery in leaves of Allium cepa L. Int Sch Res Notices 2014:568081. https://doi.org/10.1155/2014/568081. (PMID: 10.1155/2014/568081273793154897235)
Chen L (2010) Effects of sulfur dioxide on POD, Pro and MDA in maize seedlings. Genom Appl Biol 29(4):727–730.
Chen Z, Wang X, Feng Z, Zheng F, Duan X, Yang W (2008) Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta. China J Environl Sci 20(3):320–325. https://doi.org/10.1016/S1001-0742(08)60050-9. (PMID: 10.1016/S1001-0742(08)60050-9)
Choquette NE, Ainsworth EA, Bezodis W, Cavanagh AP (2020) Ozone tolerant maize hybrids maintain Rubisco content and activity during long-term exposure in the field. Plant Cell Environ 43(12):3033–3047. https://doi.org/10.1111/pce.13876. (PMID: 10.1111/pce.13876328444077756399)
Christ MM, Ainsworth EA, Nelson R, Schurr U, Walter A (2006) Anticipated yield loss in field-grown soybean under elevated ozone can be avoided at the expense of leaf growth during early reproductive growth stages in favourable environmental conditions. J Exp Bot 57(10):2267–2275. https://doi.org/10.1093/jxb/erj199. (PMID: 10.1093/jxb/erj19916798846)
Coleto I, de la Peña M, Rodríguez-Escalante J, Bejarano I, Glauser G, Aparicio-Tejo PM, González-Moro MB, Marino D (2017) Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biol 17(1):157. https://doi.org/10.1186/s12870-017-1100-9. (PMID: 10.1186/s12870-017-1100-9289313805607504)
Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: An observation-based review. Elementa Sci Anthropocene. https://doi.org/10.12952/journal.elementa.000029. (PMID: 10.12952/journal.elementa.000029)
Cousins AB, Bloom AJ (2003) Influence of elevated CO 2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.). Plant Cell Environ 26(9):1525–1530. https://doi.org/10.1046/j.1365-3040.2003.01075.x. (PMID: 10.1046/j.1365-3040.2003.01075.x)
da Cunha KPV, do Nascimento CWA, (2008) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197(1):323. https://doi.org/10.1007/s11270-008-9814-9. (PMID: 10.1007/s11270-008-9814-9)
Daocheng G, Liao M, Wu G, Wang H, Li Q, Chen Y, Deng S, Zheng Y, Ou J, Wang B (2021) Characteristics of peroxyacetyl nitrate (PAN) in the high-elevation background atmosphere of South-Central China: Implications for regional photochemical pollution. Atmos Environ 254:118424. https://doi.org/10.1016/j.atmosenv.2021.118424. (PMID: 10.1016/j.atmosenv.2021.118424)
Davies T (1980) The influence of environmental factors on the sensitivity of Phleum pratense L, to SO2 and NO2 pollution. Lancaster University, Lancaster.
de Castro LZ, da Silva TRB, Ronchi SN, Guimarães AAT, Nalini Júnior HA, Ribeiro JS, Coutinho SCG, Pimentel EF, Endringer DC (2020) Mangifera indica L. as airborne metal biomonitor for regions of the State of Espírito Santo (Brazil). Water Air Soil Pollut 231(2):74. https://doi.org/10.1007/s11270-020-4433-1. (PMID: 10.1007/s11270-020-4433-1)
Deepak SS, Agrawal M (2001) Influence of elevated CO 2 on the sensitivity of two soybean cultivars to sulphur dioxide. Environ Exp Bot 46(1):81–91. https://doi.org/10.1016/S0098-8472(01)00086-7. (PMID: 10.1016/S0098-8472(01)00086-711378175)
Delgado-Saborit JM, Esteve-Cano VJ (2008) Assessment of tropospheric ozone effects on citrus crops using passive samplers in a western Mediterranean area. Agr Ecosyst Environ 124(1):147–153. https://doi.org/10.1016/j.agee.2007.09.006. (PMID: 10.1016/j.agee.2007.09.006)
Dias de Oliveira E, Bramley H, Siddique KHM, Henty S, Berger J, Palta JA (2013) Can elevated CO 2 combined with high temperature ameliorate the effect of terminal drought in wheat? Function Plant Biol 40(2):160–171. https://doi.org/10.1071/fp12206. (PMID: 10.1071/fp12206)
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57(8):1697–1709. https://doi.org/10.1093/jxb/erj160. (PMID: 10.1093/jxb/erj16016606633)
Ding W, Cai Z, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmos Environ 39(18):3199–3207. https://doi.org/10.1016/j.atmosenv.2005.02.022. (PMID: 10.1016/j.atmosenv.2005.02.022)
Dong J-l, Li X, Nazim G, Duan Z-Q (2018) Interactive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.). J Integr Agric 17(11):2438–2446. https://doi.org/10.1016/S2095-3119(18)62005-2. (PMID: 10.1016/S2095-3119(18)62005-2)
Dong J, Li X, Chu W, Duan Z (2017) High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO 2 . Sci Hortic 218:275–283. https://doi.org/10.1016/j.scienta.2016.11.026. (PMID: 10.1016/j.scienta.2016.11.026)
Drag DW, Slattery R, Siebers M, DeLucia EH, Ort DR, Bernacchi CJ (2020) Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. J Environ Bot 71(12):3690–3700. https://doi.org/10.1093/jxb/eraa133. (PMID: 10.1093/jxb/eraa133)
Dugger WM, Taylor OC, Cardiff E, Thompson CR (1962) Relationship between carbohydrate content and susceptibility of pinto bean plants to ozone damage. Proc Am Soc Hortic Sci 81:304–315.
EEA (2012) Particulate matter from natural sources and related reporting under the EU Air Quality Directive in 2008 and 2009. European Environment Agency Publications Office, Luxembourg.
Emberson L, Ashmore MR, Murray F (2003) Air pollution impacts on crops and forests. Imperial College Press, River Edge, NJ. (PMID: 10.1142/p244)
Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel W-J, Iba K, Schroeder JI (2016) CO 2 sensing and CO 2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci 21(1):16–30. https://doi.org/10.1016/j.tplants.2015.08.014. (PMID: 10.1016/j.tplants.2015.08.01426482956)
Ercilla-Montserrat M, Muñoz P, Montero JI, Gabarrell X, Rieradevall J (2018) A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J Clean Prod 195:385–395. https://doi.org/10.1016/j.jclepro.2018.05.183. (PMID: 10.1016/j.jclepro.2018.05.183)
Farooq M, Arya KR, Kumar S, Gopal K, Joshi PC, Hans RK (2000) Industrial pollutants mediated damage to mango (Mangifera indica) crop - A case study. J Environ Biol 21(2):165–167. https://doi.org/10.3923/ijb.2019.1.4. (PMID: 10.3923/ijb.2019.1.4)
Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph13111047. (PMID: 10.3390/ijerph13111047277922055129257)
Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43(8):1510–1519. https://doi.org/10.1016/j.atmosenv.2008.11.033. (PMID: 10.1016/j.atmosenv.2008.11.033)
Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Glob Change Biol 14(11):2696–2708. https://doi.org/10.1111/j.1365-2486.2008.01673.x. (PMID: 10.1111/j.1365-2486.2008.01673.x)
Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Glob Change Biol 17(1):580–591. https://doi.org/10.1111/j.1365-2486.2010.02184.x. (PMID: 10.1111/j.1365-2486.2010.02184.x)
Finnan JM, Donnelly A, Jones MB, Burke JI (2005) The effect of elevated levels of carbon dioxide on potato crops. J Crop Improv 13(1–2):91–111. https://doi.org/10.1300/J411v13n01_06. (PMID: 10.1300/J411v13n01_06)
Garcia-Huidobro T, Marshall FM, Bell JNB (2001) A risk assessment of potential agricultural losses due to ambient SO 2 in the central regions of Chile. Atmos Environ 35(29):4903–4915. https://doi.org/10.1016/S1352-2310(01)00344-2. (PMID: 10.1016/S1352-2310(01)00344-2)
Gardner S, Freer-Smith P, Tucker J, Taylor G (2005) Elevated CO2 protects poplar (Populus trichocarpa x P. deltoides) from damage induced by O3: Identification of mechanisms. Funct Plant Biology. https://doi.org/10.1071/FP04131. (PMID: 10.1071/FP04131)
Garg A, Saxena P, Ghosh C (2015) Evaluation of tolerance and sensitivity of selected plant species with special reference to gasoline exhaust pollution. Int J Sci Technol Res 4:199–207.
Garrec J-P (2019) What is the impact of air pollutants on vegetation? https://www.encyclopedie-environnement.org/en/life/impact-air-pollutants-on-vegetation.
Gheorghe I, Ion B (2011) The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In: Khallaf M (ed) The impact of air pollution on health, economy, environment and agricultural sources. pp 241–280. doi: https://doi.org/10.5772/17660.
Gherardi M, Pontalti F, Vianello G, Antisari LV (2009) Heavy metals in the soil-plant system: monitoring urban and extra-urban parks in the Emilia Romagna Region (Italy). Agrochimica 53(3):196–208.
Ghorbanli M, Bakand Z, Bakand S (2007) Air pollution effects on the activity of antioxidant enzymes in Nerium oleander and Robinia pseudo acacia plants in Tehran. Iranian J Environ Health Sci Eng 4(3):157–162.
Ghosh A, Agrawal M, Agrawal SB (2020) Effect of water deficit stress on an Indian wheat cultivar (Triticum aestivum L. HD 2967) under ambient and elevated level of ozone. Sci Total Environ 714:136837. https://doi.org/10.1016/j.scitotenv.2020.136837. (PMID: 10.1016/j.scitotenv.2020.13683732018978)
Gillespie KM, Xu F, Richter KT, McGrath JM, Markelz RJ, Ort DR, Leakey AD, Ainsworth EA (2012) Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ 35(1):169–184. https://doi.org/10.1111/j.1365-3040.2011.02427.x. (PMID: 10.1111/j.1365-3040.2011.02427.x21923758)
Glatthor N, von Clarmann T, Fischer H, Funke B, Grabowski U, Höpfner M, Kellmann S, Kiefer M, Linden A, Milz M, Steck T, Stiller GP (2007) Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Atmos Chem Phys 7:2775–2787. https://doi.org/10.5194/acp-7-2775-2007. (PMID: 10.5194/acp-7-2775-2007)
GML (2022) Trends in atmospheric carbon dioxide. Global Monitoring Laboratory, National Oceanic and Atmospheric Administration. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html .
Gruda N, Tanny J (2015) Protected crops – recent advances, innovative technologies and future challenges. Acta Hortic 1107:271–278. https://doi.org/10.17660/ActaHortic.2015.1107.37. (PMID: 10.17660/ActaHortic.2015.1107.37)
Gu Q, Chen Z, Cui W, Zhang Y, Hu H, Yu X, Wang Q, Shen W (2018) Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. Ecotoxicol Environ Saf 147:861–871. https://doi.org/10.1016/j.ecoenv.2017.09.054. (PMID: 10.1016/j.ecoenv.2017.09.05428968939)
Guderian R, Tingey DT, Rabe R (1984) Effects of photochemical oxidants on plants. In: Air pollution by photochemical oxidants. Environmental Research Laboratory, Corvallis.
Hamim (2005) Photosynthesis of C 3 and C 4 species in response to increased CO 2 concentration and drought stress. HAYATI J Biosci 12(4):131–138. https://doi.org/10.1016/S1978-3019(16)30340-0. (PMID: 10.1016/S1978-3019(16)30340-0)
Han B, Duan X, Wang Y, Zhu K, Zhang J, Wang R, Hu H, Qi F, Pan J, Yan Y, Shen W (2017) Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 7(1):46185. https://doi.org/10.1038/srep46185. (PMID: 10.1038/srep46185283873125384014)
Harmens H, Hayes F, Sharps K, Radbourne A, Mills G (2019) Can reduced irrigation mitigate ozone impacts on an ozone-sensitive African wheat variety? Plants. https://doi.org/10.3390/plants8070220. (PMID: 10.3390/plants8070220313369026681504)
Harrison RM, Chirgawi MB (1989) The assessment of air and soil as contributors of some trace metals to vegetable plants I. Use of a filtered air growth cabinet. Sci Total Environ 83(1–2):13–34. https://doi.org/10.1016/0048-9697(89)90003-x. (PMID: 10.1016/0048-9697(89)90003-x2781263)
Heck WW (1982) Future directions in air pollution research. In: Unsworth MH, Ormrod DP (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth-Heinemann, pp 411–435. doi: https://doi.org/10.1016/B978-0-408-10705-1.50024-7.
Heggestad HE (1986) Effects of increasing doses of sulfur dioxide and ambient ozone on tomatoes: Plant growth, leaf injury, elemental composition, fruit yields, and quality. Phytopathology 76(12):1338. (PMID: 10.1094/Phyto-76-1338)
Heggestad HE, Lesser VM (1990) Effects of ozone, sulfur dioxide, soil water deficit, and cultivar on yields of soybean. J Environ Qual 19(3):488–495. https://doi.org/10.2134/jeq1990.00472425001900030022x. (PMID: 10.2134/jeq1990.00472425001900030022x)
Helyes L, Nemenyi A, Pek Z, Lugasi A (2012) The simultaneous effect of elevated CO 2 -level and nitrogen-supply on the fruit components of tomato. Acta Aliment 41(2):265–271. https://doi.org/10.1556/aalim.41.2012.2.13. (PMID: 10.1556/aalim.41.2012.2.13)
Heyneke E, Strauss AJ, Strasser RJ, Krüger GHJ (2012) Open-top chamber facility to study air pollution impacts in South Africa Part II: SO2–drought interactions on yield, photosynthesis and symbiotic nitrogen fixation in soybean. S Afr J Plant Soil 29(1):9–23. https://doi.org/10.1080/02571862.2012.688373. (PMID: 10.1080/02571862.2012.688373)
Hill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmos Environ 4(4):341–348. https://doi.org/10.1016/0004-6981(70)90078-8. (PMID: 10.1016/0004-6981(70)90078-8)
Hill BA, Baum E, Hennen A, Walton I (2001) Sulfur : Sulfur emissions and midwest power plants. Clean Air Task Force, Boston.
Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut 89(3):255–261. https://doi.org/10.1016/0269-7491(94)00075-O. (PMID: 10.1016/0269-7491(94)00075-O15091515)
Högy P, Wieser H, Köhler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A (2009) Effects of elevated CO 2 on grain yield and quality of wheat: results from a 3-year free-air CO 2 enrichment experiment. Plant Biology (stuttg) 11(Suppl 1):60–69. https://doi.org/10.1111/j.1438-8677.2009.00230.x. (PMID: 10.1111/j.1438-8677.2009.00230.x)
IPCC (2001) Climate change 2001: Synthesis report. A contribution of working groups I, II, and III to the third assessment report of the integovernmental panel on climate change. Cambridge, United Kingdom, and New York, NY, USA, Cambridge, UK; New York.
IPCC (2013) Carbon dioxide capture and storage. Cambridge University Press, New York.
Ito J, Hasegawa S, Fujita K, Ogasawara S, Fujiwara T (1999) Effect of CO 2 enrichment on fruit growth and quality in Japanese pear (Pyrus serotina Reheder cv. Kosui). Soil Sci Plant Nutr 45(2):385–393. https://doi.org/10.1080/00380768.1999.10409352. (PMID: 10.1080/00380768.1999.10409352)
Jamali S, Klingmyr D, Tagesson T (2020) Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018. Remote Sens. https://doi.org/10.3390/rs12213526. (PMID: 10.3390/rs12213526)
Jeyakumar M, Jayabalan N, Arockiasamy DI (2003) Effect of sulphur dioxide on maize (Zea mays L.) var. (Co-1) seedlings at lethal dose 50. Physiol Mol Biol Plants 9(1):147–151.
Jin C, Du S, Wang Y, Condon J, Lin X, Zhang Y (2009a) Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J Plant Nutr Soil Sci 172(3):418–424. https://doi.org/10.1002/jpln.200700220. (PMID: 10.1002/jpln.200700220)
Jin CW, Du ST, Zhang YS, Tang C, Lin XY (2009b) Atmospheric nitric oxide stimulates plant growth and improves the quality of spinach (Spinacia oleracea). Annals of Applied Biology 155(1):113–120. https://doi.org/10.1111/j.1744-7348.2009.00327.x. (PMID: 10.1111/j.1744-7348.2009.00327.x)
Jinyou L (2013) Chemical modeling for air resources: fundamentals, applications, and corroborative analysis. Elsevier Science & Technology Books, San Diego. https://doi.org/10.1016/C2012-0-07049-4. (PMID: 10.1016/C2012-0-07049-4)
Johnson J (2016) Fossil-fuel methane emissions underestimated. Chem Eng News 94(40):16–16. https://doi.org/10.1021/cen-09440-notw12. (PMID: 10.1021/cen-09440-notw12)
Joshi N, Chauhan A, Joshi PC (2009) Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist 29(4):398–404. https://doi.org/10.1007/s10669-009-9218-4. (PMID: 10.1007/s10669-009-9218-4)
Kadono T, Yamaguchi Y, Furuichi T, Hirono M, Garrec JP, Kawano T (2006) Ozone-induced cell death mediated with oxidative and calcium signaling pathways in tobacco bel-w3 and bel-B cell suspension cultures. Plant Signal Behav 1(6):312–322. https://doi.org/10.4161/psb.1.6.3518. (PMID: 10.4161/psb.1.6.3518195170022634246)
Kan H, Chen B, Hong C (2009) Health impact of outdoor air pollution in China: Current knowledge and future research needs. Environ Health Perspect 117(5):A187–A187. https://doi.org/10.1289/ehp.12737. (PMID: 10.1289/ehp.12737194789752685855)
Kang S, Zhang F, Hu X, Zhang J (2002) Benefits of CO 2 enrichment on crop plants are modified by soil water status. Plant Soil 238(1):69–77. https://doi.org/10.1023/A:1014244413067. (PMID: 10.1023/A:1014244413067)
Kao C-H (2013) Role of nitric oxide in rice plants. Crop, Environment & Bioinformatics 10:229–237.
Kats G, Dawson PJ, Bytnerowicz A, Wolf JW, Ray Thompson C, Olszyk DM (1985) Effects of ozone or sulfur dioxide on growth and yield of rice. Agr Ecosyst Environ 14(1):103–117. https://doi.org/10.1016/0167-8809(85)90088-X. (PMID: 10.1016/0167-8809(85)90088-X)
Kender WJ, Spierings FHFG (1975) Effects of sulfur dioxide, ozone, and their interactions on ‘Golden Delicious’ apple trees. Neth J Plant Pathol 81(4):149–151. https://doi.org/10.1007/BF01976808. (PMID: 10.1007/BF01976808)
Koch KE, Allen LHJ, Jones P, Avigne WT (1987) Growth of citrus rootstock (Carrize citrange) seedlings during and after long-term CO 2 enrichment. J Am Soc Hortic Sci 112(1):77–82. (PMID: 10.21273/JASHS.112.1.77)
Kropff MJ, Smeets WLM, Meijer EMJ, van der Zalm AJA, Bakx EJ (1990) Effects of sulphur dioxide on leaf photosynthesis: the role of temperature and humidity. Physiol Plant 80(4):655–661. https://doi.org/10.1111/j.1399-3054.1990.tb05693.x. (PMID: 10.1111/j.1399-3054.1990.tb05693.x)
Kumar S (2013) Appraisal of heavy metal concentration in selected vegetables exposed to different degrees of pollution in Agra. India Environ Monit Assess 185(3):2683–2690. https://doi.org/10.1007/s10661-012-2739-1. (PMID: 10.1007/s10661-012-2739-122773079)
La GX, Fang P, Teng YB, Li YJ, Lin XY (2009) Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). J Zhejiang Univ Sci B 10(6):454–464. https://doi.org/10.1631/jzus.B0820354. (PMID: 10.1631/jzus.B0820354194891112689558)
Lanoue J, Leonardos ED, Khosla S, Hao X, Grodzinski B (2018) Effect of elevated CO 2 and spectral quality on whole plant gas exchange patterns in tomatoes. PLoS One 13(10):e0205861. https://doi.org/10.1371/journal.pone.0205861. (PMID: 10.1371/journal.pone.0205861303358036193678)
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO 2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876. https://doi.org/10.1093/jxb/erp096. (PMID: 10.1093/jxb/erp09619401412)
Lee Y-H, Sang W-G, Baek J-K, Kim J-H, Shin P, Seo M-C, Cho J-I (2020) The effect of concurrent elevation in CO 2 and temperature on the growth, photosynthesis, and yield of potato crops. PLoS ONE 15(10):e0241081. https://doi.org/10.1371/journal.pone.0241081. (PMID: 10.1371/journal.pone.0241081330857137577495)
Lenz F, Chen K, Hu G, Keutgen N, Blanke M, Janssens M (2018) Effects of long-term CO 2 enrichment and environmental change on fruit crops. Cyбтpoпичecкoe и Дeкopaтивнoe Caдoвoдcтвo 65:154–159.
Leone IA, Brennan E, Daines RH (1966) Effect of nitrogen nutrition on the response of tobacco to ozone in the atmosphere. J Air Pollut Control Assoc 16(4):191–196. https://doi.org/10.1080/00022470.1966.10468461. (PMID: 10.1080/00022470.1966.10468461)
Li J, Zhu Z, Gerendás J (2008a) Effects of nitrogen and sulfur on total phenolics and antioxidant activity in two genotypes of leaf mustard. J Plant Nutr 31(9):1642–1655. https://doi.org/10.1080/01904160802244860. (PMID: 10.1080/01904160802244860)
Li L, Wang Y, Zhang Q, Li J, Yang X, Jin J (2008b) Wheat straw burning and its associated impacts on Beijing air quality. Sci China, Ser D Earth Sci 51(3):403–414. https://doi.org/10.1007/s11430-008-0021-8. (PMID: 10.1007/s11430-008-0021-8)
Li P, Calatayud V, Gao F, Uddling J, Feng Z (2016) Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiol 36(9):1105–1116. https://doi.org/10.1093/treephys/tpw042. (PMID: 10.1093/treephys/tpw04227217527)
Li P, Wang X, Allinson G, Li X, Stagnitti F, Murray F, Xiong X (2011) Effects of sulfur dioxide pollution on the translocation and accumulation of heavy metals in soybean grain. Environ Sci Pollut Res 18(7):1090–1097. https://doi.org/10.1007/s11356-011-0454-z. (PMID: 10.1007/s11356-011-0454-z)
Li X, Dong J, Gruda NS, Chu W, Duan Z (2020) Interactive effects of the CO 2 enrichment and nitrogen supply on the biomass accumulation, gas exchange properties, and mineral elements concentrations in cucumber plants at different growth stages. Agronomy 10(1):139. https://doi.org/10.3390/agronomy10010139. (PMID: 10.3390/agronomy10010139)
Li Y, Gao R, Xue L, Wu Z, Yang X, Gao J, Ren L, Li H, Ren Y, Li G, Li C, Yan Z, Hu M, Zhang Q, Xu Y (2021) Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation. Atmos Res 250:105359. https://doi.org/10.1016/j.atmosres.2020.105359. (PMID: 10.1016/j.atmosres.2020.105359)
Liu F, Choi S, Li C, Fioletov VE, McLinden CA, Joiner J, Krotkov NA, Bian H, Janssens-Maenhout G, Darmenov AS, da Silva AM (2018) A new global anthropogenic SO 2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions. Atmos Chem Phys 18(22):16571–16586. https://doi.org/10.5194/acp-18-16571-2018. (PMID: 10.5194/acp-18-16571-2018)
Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172(3):544–555. https://doi.org/10.1016/j.plantsci.2006.11.007. (PMID: 10.1016/j.plantsci.2006.11.007)
Liu S, Waqas MA, Wang S-H, Xiong X-Y, Wan Y-F (2017) Effects of increased levels of atmospheric CO 2 and high temperatures on rice growth and quality. PLoS ONE 12(11):e0187724–e0187724. https://doi.org/10.1371/journal.pone.0187724. (PMID: 10.1371/journal.pone.0187724291454205690611)
Liu XDAR (2021) Significant reductions in crop yields from air pollution and heat stress in the United States. Earth’s Future. https://doi.org/10.1029/2021EF002000. (PMID: 10.1029/2021EF002000)
Lynch J, Cain M, Frame D, Pierrehumbert R (2021) Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO 2 -emitting sectors. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2020.518039. (PMID: 10.3389/fsufs.2020.518039336446957116829)
Mamatha H, Rao NK, Laxman RH, Shivashankara KS, Bhatt RM, Pavithra KC (2014) Impact of elevated CO 2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish Photosynthetica 52(4):519–528. https://doi.org/10.1007/s11099-014-0059-0. (PMID: 10.1007/s11099-014-0059-0)
Manjunath BT, Reddy J (2019) Effect of air pollutants on some heavy metals and biochemical constituents of leaves of some plants at Bangalore city: A case study. J Appl Nat Sci 11(1):66–75. https://doi.org/10.31018/jans.v11i1.1961. (PMID: 10.31018/jans.v11i1.1961)
Masto RE, George J, Rout TK, Ram LC (2017) Multi element exposure risk from soil and dust in a coal industrial area. J Geochem Explor 176:100–107. https://doi.org/10.1016/j.gexplo.2015.12.009. (PMID: 10.1016/j.gexplo.2015.12.009)
Matsushima J, Harada M (1966) Sulfur dioxide gas injury to fruit trees V. Absorption of sulfur dioxide by citrus trees and its relation to leaf fall and mineral contents of leaves. J Jpn Soc Hortic Sci 35(3):242–246. https://doi.org/10.2503/jjshs.35.242. (PMID: 10.2503/jjshs.35.242)
Mills G, Harmens H (2011) Ozone pollution: A hidden threat to food security. Report prepared by the ICP Vegetation. Centre for Ecology & Hydrology, Bangor.
Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M (2018) Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob Change Biol 24(10):4869–4893. https://doi.org/10.1111/gcb.14381. (PMID: 10.1111/gcb.14381)
Mina U, Chandrashekara TK, Kumar SN, Meena MC, Yadav S, Tiwari S, Singh D, Kumar P, Kumar R (2018) Impact of particulate matter on basmati rice varieties grown in Indo-Gangetic Plains of India: Growth, biochemical, physiological and yield attributes. Atmos Environ 188:174–184. https://doi.org/10.1016/j.atmosenv.2018.06.015. (PMID: 10.1016/j.atmosenv.2018.06.015)
Mitterbauer E, Enders M, Bender J, Erbs M, Habekuß A, Kilian B, Ordon F, Weigel H-J (2017) Growth response of 98 barley (Hordeum vulgare L) genotypes to elevated CO2 and identification of related quantitative trait loci using genome-wide association studies. Plant Breeding 136(4):483–497. https://doi.org/10.1111/pbr.12501. (PMID: 10.1111/pbr.12501)
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. https://doi.org/10.1016/j.tplants.2004.08.009. (PMID: 10.1016/j.tplants.2004.08.00915465684)
Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135(4):2348–2357. https://doi.org/10.1104/pp.104.043968. (PMID: 10.1104/pp.104.04396815299126520802)
Mortensen LM (1992) Effects of ozone concentration on growth of tomato at various light, air humidity and carbon dioxide levels. Sci Hortic 49(1):17–24. https://doi.org/10.1016/0304-4238(92)90139-4. (PMID: 10.1016/0304-4238(92)90139-4)
Moura BB, Hoshika Y, Silveira NM, Marcos FCC, Machado EC, Paoletti E, Ribeiro RV (2018) Physiological and biochemical responses of two sugarcane genotypes growing under free-air ozone exposure. Environ Exp Bot 153:72–79. https://doi.org/10.1016/j.envexpbot.2018.05.004. (PMID: 10.1016/j.envexpbot.2018.05.004)
Muneer S, Kim EJ, Park JS, Lee JH (2014a) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15(3):4657–4670. https://doi.org/10.3390/ijms15034657. (PMID: 10.3390/ijms15034657246428843975419)
Muneer S, Kim TH, Choi BC, Lee BS, Lee JH (2014b) Effect of CO, NO x and SO 2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator. Redox Biol 2:91–98. https://doi.org/10.1016/j.redox.2013.12.006. (PMID: 10.1016/j.redox.2013.12.00625460723)
Munsif R, Zubair M, Aziz A, Zafar MN (2020) Industrial air emission pollution: Potential sources and sustainable mitigation. In: Environmental Emissions. doi: https://doi.org/10.5772/intechopen.93104.
Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133. https://doi.org/10.1016/j.envexpbot.2019.02.003. (PMID: 10.1016/j.envexpbot.2019.02.003)
Nandi PK, Agrawal M, Rao DN (1986) Effects of fumigating rice plants with sulphur dioxide on photosynthetic pigments and nonstructural carbohydrates. Agr Ecosyst Environ 18(1):53–62. https://doi.org/10.1016/0167-8809(86)90174-X. (PMID: 10.1016/0167-8809(86)90174-X)
Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO 2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452(7186):483–486. https://doi.org/10.1038/nature06720. (PMID: 10.1038/nature0672018305482)
NOAA (2022) Trends in atmospheric carbon dioxide. Earth System Research Laboratories.
Global Monitoring Laboratory (2022) https://gml.noaa.gov/ccgg/trends/global.html . Accessed Feb 9 2022.
Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126(3):973. https://doi.org/10.1104/pp.126.3.973. (PMID: 10.1104/pp.126.3.97311457948116454)
Normand F, Lauri PE, Legave JM (2015) Climate change and its probable effects on mango production and cultivation. Acta Hort 1075:21–32. (PMID: 10.17660/ActaHortic.2015.1075.1)
Oka E, Tagami Y, Oohashi T, Kondo N (2004) A physiological and morphological study on the injury caused by exposure to the air pollutant, peroxyacetyl nitrate (PAN), based on the quantitative assessment of the injury. J Plant Res 117(1):27–36. https://doi.org/10.1007/s10265-003-0127-1. (PMID: 10.1007/s10265-003-0127-114661076)
Okano K, Totsuka T (1986) Absorption of nitrogen dioxide by sunflower plants grown at various levels of nitrate. New Phytol 102(4):551–562. https://doi.org/10.1111/j.1469-8137.1986.tb00831.x. (PMID: 10.1111/j.1469-8137.1986.tb00831.x)
Okano K, Totsuka T, Fukuzawa T, Tazaki T (1985) Growth responses of plants to various concentrations of nitrogen dioxide. Environmental Pollution Series a, Ecological and Biological 38(4):361–373. https://doi.org/10.1016/0143-1471(85)90107-2. (PMID: 10.1016/0143-1471(85)90107-2)
Olszyk DM (1989) The growth and yield effects of ambient air pollution on Valencia orange trees. Statewide Air Pollution Research Center, University of California, Riverside.
Pacholski A, Manderscheid R, Weigel H-J (2015) Effects of free air CO 2 enrichment on root growth of barley, sugar beet and wheat grown in a rotation under different nitrogen supply. Eur J Agron 63:36–46. https://doi.org/10.1016/j.eja.2014.10.005. (PMID: 10.1016/j.eja.2014.10.005)
Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52(360):1383–1400. https://doi.org/10.1093/jexbot/52.360.1383. (PMID: 10.1093/jexbot/52.360.138311457898)
Payamara J, Payamara A (2012) Effect of air pollution on rice in north of Iran. Int J ChemTech Res 4(2):792–797.
Peng J, Xu Y, Shang B, Agathokleous E, Feng Z (2021) Effects of elevated ozone on maize under varying soil nitrogen levels: Biomass, nitrogen and carbon, and their allocation to kernel. Sci Total Environ 765:144332. https://doi.org/10.1016/j.scitotenv.2020.144332. (PMID: 10.1016/j.scitotenv.2020.14433233385814)
Pennisi G, Orsini F, Gasperi D, Mancarella S, Sanoubar R, Vittori Antisari L, Vianello G, Gianquinto G (2016) Soilless system on peat reduce trace metals in urban-grown food: unexpected evidence for a soil origin of plant contamination. Agron Sustain Dev 36(4):56. https://doi.org/10.1007/s13593-016-0391-9. (PMID: 10.1007/s13593-016-0391-9)
Peters JL, Castillo FJ, Heath RL (1989) Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiol 89(1):159–164. https://doi.org/10.1104/pp.89.1.159. (PMID: 10.1104/pp.89.1.159166665081055812)
Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Phil Trans R Soc 368(1621):20130126–20130126. https://doi.org/10.1098/rstb.2013.0126. (PMID: 10.1098/rstb.2013.0126)
Piñero MC, Otálora G, Porras ME, Sánchez-Guerrero MC, Lorenzo P, Medrano E, Del Amor FM (2017) The form in which nitrogen is supplied affects the polyamines, amino acids, and mineral composition of sweet pepper fruit under an elevated CO 2 concentration. J Agric Food Chem 65(4):711–717. https://doi.org/10.1021/acs.jafc.6b04118. (PMID: 10.1021/acs.jafc.6b0411828075582)
Pritchard SG, Ju Z, van Santen E, Qiu J, Weaver DB, Prior SA, Rogers HH (2000) The influence of elevated CO 2 on the activities of antioxidative enzymes in two soybean genotypes. Funct Plant Biol 27(11):1061. https://doi.org/10.1071/PP99206. (PMID: 10.1071/PP99206)
Qifu M, Murray F (1991) Responses of potato plants to sulphur dioxide, water stress and their combination. New Phytol 118(1):101–109. https://doi.org/10.1111/j.1469-8137.1991.tb00570.x. (PMID: 10.1111/j.1469-8137.1991.tb00570.x)
Qifu M, Murray F (1993) Effects of SO 2 and salinity on nitrogenase activity, nitrogen concentration and growth of young soybean plants. Environ Exp Bot 33(4):529–537. https://doi.org/10.1016/0098-8472(93)90027-D. (PMID: 10.1016/0098-8472(93)90027-D)
Qifu M, Murray F (1994) Responses to sequential exposure to SO2 and salinity in soybean (Glycine max L.). Water Air Soil Pollut 73(1):143–155. https://doi.org/10.1007/BF00477982. (PMID: 10.1007/BF00477982)
Rai PK, Panda LLS (2014) Leaf dust deposition and its impact on biochemical aspect of some roadside plants of Aizawl, Mizoram, North east India. Int Res J Environ Sci 3(11):14–19.
Ranieri A, D’Urso G, Nali C, Lorenzini G, Soldatini GF (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plant 97(2):381–387. https://doi.org/10.1034/j.1399-3054.1996.970224.x. (PMID: 10.1034/j.1399-3054.1996.970224.x)
Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes). Plant Physiol 109:421–432. (PMID: 10.1104/pp.109.2.421)
Rathore D, Chaudhary IJ (2021) Effects of tropospheric ozone on groundnut (Arachis hypogea L.) cultivars: role of plant age and antioxidative potential. Atmos Pollut Res 12(3):381–395. https://doi.org/10.1016/j.apr.2021.01.005. (PMID: 10.1016/j.apr.2021.01.005)
Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47(S3):S-172-S−189. https://doi.org/10.2135/cropsci2007.10.0022IPBS. (PMID: 10.2135/cropsci2007.10.0022IPBS)
Ribeiro RV, Ottosen C-O, Rosenqvist E, Medanha T, Abdelhakim L, Machado EC, Struik PC (2021) Elevated CO 2 concentration increases photosynthetic sensitivity to nitrogen supply of sorghum in a genotype-dependent manner. Plant Physiol Biochem 168:202–210. https://doi.org/10.1016/j.plaphy.2021.10.009. (PMID: 10.1016/j.plaphy.2021.10.00934649023)
Roberts JM (1990) The atmospheric chemistry of organic nitrates. Atmos Environ A Gen Top 24(2):243–287. https://doi.org/10.1016/0960-1686(90)90108-Y. (PMID: 10.1016/0960-1686(90)90108-Y)
Robinson JM, Rowland RA (1996) Carbohydrate and carbon metabolite accumulation responses in leaves of ozone tolerant and ozone susceptible spinach plants after acute ozone exposure. Photosynth Res 50(2):103–115. https://doi.org/10.1007/BF00014882. (PMID: 10.1007/BF0001488224271929)
Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2007) Elevated CO 2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59(3):252–263. https://doi.org/10.1016/j.envexpbot.2006.01.001. (PMID: 10.1016/j.envexpbot.2006.01.001)
Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA, Ort DR, Bernacchi CJ (2013) Global warming can negate the expected CO 2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162(1):410–423. https://doi.org/10.1104/pp.112.211938. (PMID: 10.1104/pp.112.211938235128833641220)
Saarikoski S, Teinilä K, Timonen H, Aurela M, Laaksovirta T, Reyes F, Vásques Y, Oyola P, Artaxo P, Pennanen AS, Junttila S, Linnainmaa M, Salonen RO, Hillamo R (2018) Particulate matter characteristics, dynamics, and sources in an underground mine. Aerosol Sci Technol 52(1):114–122. https://doi.org/10.1080/02786826.2017.1384788. (PMID: 10.1080/02786826.2017.1384788)
Sabaratnam S, Gupta G, Mulchi C (1988) Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean. Environ Pollut 51(2):113–120. https://doi.org/10.1016/0269-7491(88)90200-X. (PMID: 10.1016/0269-7491(88)90200-X15092631)
Saddique Q, Khan MI, Habib ur Rahman M, Jiatun X, Waseem M, Gaiser T, Mohsin Waqas M, Ahmad I, Chong L, Cai H, (2020) Effects of elevated air temperature and CO 2 on maize production and water use efficiency under future climate change scenarios in Shaanxi Province. China Atmosphere 11(8):843. https://doi.org/10.3390/atmos11080843. (PMID: 10.3390/atmos11080843)
Sakaki T, Kondo N, Sugahara K (1983) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: Role of active oxygens. Physiol Plant 59(1):28–34. https://doi.org/10.1111/j.1399-3054.1983.tb06566.x. (PMID: 10.1111/j.1399-3054.1983.tb06566.x)
Sarkar A, Agrawal SB (2012) Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers. J Environ Manage 95:S19-24. https://doi.org/10.1016/j.jenvman.2011.06.049. (PMID: 10.1016/j.jenvman.2011.06.04921788100)
Sarkar A, Rakwal R, Bhushan Agrawal S, Shibato J, Ogawa Y, Yoshida Y, Kumar Agrawal G, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9(9):4565–4584. https://doi.org/10.1021/pr1002824. (PMID: 10.1021/pr100282420701290)
Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxicol Environ Saf 115:101–111. https://doi.org/10.1016/j.ecoenv.2015.02.010. (PMID: 10.1016/j.ecoenv.2015.02.01025682587)
Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci Total Environ 427–428:253–262. https://doi.org/10.1016/j.scitotenv.2012.03.051. (PMID: 10.1016/j.scitotenv.2012.03.05122560244)
Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City. India Environ Monit Assess 142(1):269–278. https://doi.org/10.1007/s10661-007-9924-7. (PMID: 10.1007/s10661-007-9924-717879134)
Sharma U, Bekturova A, Ventura Y, Sagi M (2020) Sulfite oxidase activity level determines the sulfite toxicity effect in leaves and fruits of tomato plants. Agronomy. https://www.mdpi.com/2073-4395/10/5/694#.
Sheng Q, Zhu Z (2019) Effects of nitrogen dioxide on biochemical responses in 41 garden plants. Plants (basel, Switzerland) 8(2):45. https://doi.org/10.3390/plants8020045. (PMID: 10.3390/plants8020045)
Shertz RD, Kender WJ, Musselman RC (1980) Foliar response and growth of apple trees following exposure to ozone and sulfur dioxide. J Am Soc Hortic Sci 105(4):594–598. (PMID: 10.21273/JASHS.105.4.594)
Singh A, Agrawal SB, Rathore D (2005) Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. Environ Pollut 134(3):385–395. https://doi.org/10.1016/j.envpol.2004.09.017. (PMID: 10.1016/j.envpol.2004.09.01715620584)
Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014a) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21(4):2628–2641. https://doi.org/10.1007/s11356-013-2188-6. (PMID: 10.1007/s11356-013-2188-6)
Singh H, Poudel MR, Dunn BL, Fontanier C, Kakani G (2020) Effect of greenhouse CO 2 supplementation on yield and mineral element concentrations of leafy greens grown using nutrient film technique. Agronomy 10(3):323. https://doi.org/10.3390/agronomy10030323. (PMID: 10.3390/agronomy10030323)
Singh P, Singh S, Agrawal SB, Agrawal M (2012) Assessment of the interactive effects of ambient O 3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using open-top chambers. Environ Monit Assess 184(10):5863–5874. https://doi.org/10.1007/s10661-011-2386-y. (PMID: 10.1007/s10661-011-2386-y22072445)
Singh R, Benal M, Bose US, Gurjar PS (2014b) Response of different methods of boron and nitrogen application on growth and yield of cauliflower (Brassica oleracea var botrytis L.). Environ Ecol 32(3):842–848.
Singh R, Tripathi P, Kumar A, Gupta A, Singh KK (2014c) Effect of SO 2 on chlorophyll content and leaf temperature on leaves of potato (Solenum tuberosum L.) genotypes. Vayumandal December-January 2014:54–60.
Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary. In: Solomon. S., Qin. D., Manning. M. et al. (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 19–91.
Song W, Liu X-Y, Hu C-C, Chen G-Y, Liu X-J, Walters WW, Michalski G, Liu C-Q (2021) Important contributions of non-fossil fuel nitrogen oxides emissions. Nat Commun 12(1):243. https://doi.org/10.1038/s41467-020-20356-0. (PMID: 10.1038/s41467-020-20356-0334318577801390)
Spichtinger N, Damoah R, Eckhardt S, Forster C, James P, Beirle S, Marbach T, Wagner T, Novelli PC, Stohl A (2004) Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data. Atmos Chem Phys 4:1857–1868. https://doi.org/10.5194/acp-4-1857-2004. (PMID: 10.5194/acp-4-1857-2004)
Spierings FHFG (1971) Influence of fumigations with NO 2 on growth and yield of tomato plants. Neth J Plant Pathol 77(6):194–200. https://doi.org/10.1007/BF01977278. (PMID: 10.1007/BF01977278)
Sutherland F (1960) Effects of hydrogen fluoride gas on seven citrus varieties. Proc Am Soc Hortic Sci 75:236–243.
Takahashi M, Morikawa H (2014) Nitrogen dioxide is a positive regulator of plant growth. Plant Signal Behav 9(2):e28033–e28033. https://doi.org/10.4161/psb.28033. (PMID: 10.4161/psb.28033245257644091254)
Takahashi M, Nakagawa M, Sakamoto A, Ohsumi C, Matsubara T, Morikawa H (2005) Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and the contents of cell constituents. New Phytol 168(1):149–154. https://doi.org/10.1111/j.1469-8137.2005.01493.x. (PMID: 10.1111/j.1469-8137.2005.01493.x16159329)
Tatsumi K, Abiko T, Kinose Y, Inagaki S, Izuta T (2019) Effects of ozone on the growth and yield of rice (Oryza sativa L.) under different nitrogen fertilization regimes. Environ Sci Pollut Res 26(31):32103–32113. https://doi.org/10.1007/s11356-019-06358-6. (PMID: 10.1007/s11356-019-06358-6)
Taub DR, Miller B, Allen H (2008) Effects of elevated CO 2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14(3):565–575. https://doi.org/10.1111/j.1365-2486.2007.01511.x. (PMID: 10.1111/j.1365-2486.2007.01511.x)
Taylor OC (1969) Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. J Air Pollut Control Assoc 19(5):347–351. https://doi.org/10.1080/00022470.1969.10466498. (PMID: 10.1080/00022470.1969.104664985797495)
Tewari RK, Kim S, Hahn E-J, Paek K-Y (2008) Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng. Plant Biotechnology Reports 2(2):113–122. https://doi.org/10.1007/s11816-008-0052-9. (PMID: 10.1007/s11816-008-0052-9)
Thomas MD (1961) Effects of air pollution on plants. WHO Monogr Ser 46:233–278. (PMID: 13776519)
Thompson CR, Hensel EG, KatsTaylor GOC (1967) Effects of continuous exposure of navel oranges to nitrogen dioxide. Atmos Environ 4(4):349–355. https://doi.org/10.1016/0004-6981(70)90079-X. (PMID: 10.1016/0004-6981(70)90079-X)
Tian H, Liu K, Hao J, Wang Y, Gao J, Qiu P, Zhu C (2013) Nitrogen oxides emissions from thermal power plants in china: Current status and future predictions. Environ Sci Technol 47(19):11350–11357. https://doi.org/10.1021/es402202d. (PMID: 10.1021/es402202d24010996)
Tie X, Wu D, Brasseur G (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou. China Atmos Environ 43(14):2375–2377. https://doi.org/10.1016/j.atmosenv.2009.01.036. (PMID: 10.1016/j.atmosenv.2009.01.036)
Tingey DT, Reinert RA, DunningHeck JAWW (1967) Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures. Atmos Environ 7(2):201–208. https://doi.org/10.1016/0004-6981(73)90169-8. (PMID: 10.1016/0004-6981(73)90169-8)
Tiwari S, Agrawal M, Marshall FM (2006) Evaluation of ambient air pollution impact on carrot plants at a sub urban site using open top chambers. Environ Monit Assess 119(1–3):15–30. https://doi.org/10.1007/s10661-005-9001-z. (PMID: 10.1007/s10661-005-9001-z16736274)
Tobe K, Omasa K (1997) Investigation of the effects of peroxyacetyl nitrate (PAN) on plants. Acta Hortic 440:239. https://doi.org/10.17660/ActaHortic.1996.440.42. (PMID: 10.17660/ActaHortic.1996.440.42)
Tricker R, Tricker S (1999) Chapter 7 - Pollutants and contaminants. In: Tricker R, Tricker S (eds) Environmental Requirements for Electromechanical and Electronic Equipment. Newnes, Oxford, pp 158–194. doi: https://doi.org/10.1016/B978-075063902-6.50010-3.
Tripathi AK, Gautam M (2007) Biochemical parameters of plants as indicators of air pollution. J Environ Biol 28(1):127–132. (PMID: 17717999)
TRS (2008) Ground-level ozone in the 21st century: Future trends, impacts and policy implications. Science Policy report 15/08. The Royal Society, London.
van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23):11707–11735. https://doi.org/10.5194/acp-10-11707-2010. (PMID: 10.5194/acp-10-11707-2010)
Verma M, Agrawal M (1996) Alleviation of injurious effects of sulphur dioxide on soybean by modifying NPK nutrients. Agr Ecosyst Environ 57(1):49–55. https://doi.org/10.1016/0167-8809(95)01000-9. (PMID: 10.1016/0167-8809(95)01000-9)
Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38(21):3431–3442. https://doi.org/10.1016/j.atmosenv.2004.03.030. (PMID: 10.1016/j.atmosenv.2004.03.030)
Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00161. (PMID: 10.3389/fpls.2017.00161293718625742254)
Voutsa D, Grimanis A, Samara C (1996) Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environ Pollut 94(3):325–335. https://doi.org/10.1016/S0269-7491(96)00088-7. (PMID: 10.1016/S0269-7491(96)00088-715093493)
Wang H, Lustig WP, Li J (2018) Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem Soc Rev 47(13):4729–4756. https://doi.org/10.1039/c7cs00885f. (PMID: 10.1039/c7cs00885f29532822)
Wang Q, Kwan M-P, Zhou K, Fan J, Wang Y, Zhan D (2019) The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environ Pollut 247:989–998. https://doi.org/10.1016/j.envpol.2019.01.086. (PMID: 10.1016/j.envpol.2019.01.08630823354)
Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu M, Berry JA, Campbell E, Fernández-Martínez M, Alkama R, Sitch S, Friedlingstein P, Smith WK, Yuan W, He W, Lombardozzi D, Kautz M, Zhu D, Lienert S, Kato E, Poulter B, Sanders TGM, Krüger I, Wang R, Zeng N, Tian H, Vuichard N, Jain AK, Wiltshire A, Haverd V, Goll DS, Peñuelas J (2020) Recent global decline of CO 2 fertilization effects on vegetation photosynthesis. Science 370(6522):1295–1300. https://doi.org/10.1126/science.abb7772. (PMID: 10.1126/science.abb777233303610)
WHO (2000) Air quality guidelines for Europe. WHO regional publications. European series., vol 91, Second edn. World Health Organization, Regional Office for Europe, Copenhagen.
WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization Regional Office Europe, Copenhagen.
Wu D-X, Wang G-X, Bai Y-F, Liao J-X (2004) Effects of elevated CO 2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agr Ecosyst Environ 104(3):493–507. https://doi.org/10.1016/j.agee.2004.01.018. (PMID: 10.1016/j.agee.2004.01.018)
Xiao G, Zhang Q, Wang R, Xiong Y (2009) Effects of elevated CO 2 concentration, supplemental irrigation and nitrogenous fertilizer application on rain-fed spring wheat yield. Acta Ecol Sin 29(4):205–210. https://doi.org/10.1016/j.chnaes.2009.08.002. (PMID: 10.1016/j.chnaes.2009.08.002)
Xiao X, Qin K, Sun X, Hui W, Yuan L, Wu L (2018) Will wheat be damaged by heavy metals on exposure to coal fly ash? Atmos Pollut Res 9(5):814–821. https://doi.org/10.1016/j.apr.2018.01.019. (PMID: 10.1016/j.apr.2018.01.019)
Xiong X, Allinson G, Stagnitti F, Murray F, Wang X, Liang R, Peterson J (2003) Effects of simultaneous exposure to atmospheric sulfur dioxide and heavy metals on the yield and metal content of soybean grain (Glycine max [L.] Merr). Bull Environ Contam Toxicol 71(5):1005–1010. https://doi.org/10.1007/s00128-003-8996-5. (PMID: 10.1007/s00128-003-8996-514705662)
Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154(3):1319. https://doi.org/10.1104/pp.110.162982. (PMID: 10.1104/pp.110.162982208555192971609)
Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148(2):881–893. https://doi.org/10.1104/pp.108.125567. (PMID: 10.1104/pp.108.125567186894452556841)
Yadav A, Bhatia A, Yadav S, Kumar V, Singh B (2019) The effects of elevated CO 2 and elevated O 3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in north India. Heliyon 5(8):e02317. https://doi.org/10.1016/j.heliyon.2019.e02317. (PMID: 10.1016/j.heliyon.2019.e02317314634056710491)
Yadav GS, Lal R, Moonilall NI, Meena RS (2020) The long-term impact of vehicular traffic on winter and spring methane flux under no-till farming in Central Ohio. Atmos Pollut Res 11(11):2030–2035. https://doi.org/10.1016/j.apr.2020.07.025. (PMID: 10.1016/j.apr.2020.07.025)
Yendrek CR, Erice G, Montes CM, Tomaz T, Sorgini CA, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA (2017) Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Plant, Cell Environ 40(12):3088–3100. https://doi.org/10.1111/pce.13075. (PMID: 10.1111/pce.13075)
Yukihiro M, Hiramatsu T, Bouteau F, Kadono T, Kawano T (2012) Peroxyacetyl nitrate-induced oxidative and calcium signaling events leading to cell death in ozone-sensitive tobacco cell-line. Plant Signal Behav 7(1):113–120. https://doi.org/10.4161/psb.7.1.18376. (PMID: 10.4161/psb.7.1.18376223019773357350)
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler J-P, Hebelstrup KH, Durner J, Lindermayr C (2019) Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. J Exp Bot 70(17):4521–4537. https://doi.org/10.1093/jxb/erz249. (PMID: 10.1093/jxb/erz249312458086736386)
Zhang R, Tie X, Bond DW (2003) Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry. Proc Natl Acad Sci 100(4):1505. https://doi.org/10.1073/pnas.252763799. (PMID: 10.1073/pnas.25276379912552100149861)
Zhang Y, Niu H (2020) Projected background nitrous oxide emissions from cultivable maize and rice farmland in China. Atmos Pollut Res 11(11):1982–1990. https://doi.org/10.1016/j.apr.2020.08.018. (PMID: 10.1016/j.apr.2020.08.018)
Zhang Y, Tang X-l, Yi H-h, Ma J-y (2013) Estimation of SO 2 emission factors from copper smelting industry in Yunnan Province. China Journal of Central South University 20(3):742–748. https://doi.org/10.1007/s11771-013-1543-6. (PMID: 10.1007/s11771-013-1543-6)
Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C, Poulter B (2017) Emerging role of wetland methane emissions in driving 21 st century climate change. Proc Natl Acad Sci 114(36):9647. https://doi.org/10.1073/pnas.1618765114. (PMID: 10.1073/pnas.1618765114288273475594636)
Zhao H (2022) Biomass burning emission and impacts on air pollution in China. In: Singh RP (ed) Asian Atmospheric Pollution. Elsevier, pp 335–347. doi: https://doi.org/10.1016/B978-0-12-816693-2.00024-X.
Zhao Y, Zhang Y, Liu F, Wang R, Huang L, Shen W (2019) Hydrogen peroxide is involved in methane-induced tomato lateral root formation. Plant Cell Rep 38(3):377–389. https://doi.org/10.1007/s00299-019-02372-7. (PMID: 10.1007/s00299-019-02372-730617541)
Zheng G, Chen J, Li W (2020) Impacts of CO 2 elevation on the physiology and seed quality of soybean. Plant Diversity 42(1):44–51. https://doi.org/10.1016/j.pld.2019.09.004. (PMID: 10.1016/j.pld.2019.09.00432140636)
Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO 2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19(1):255. https://doi.org/10.1186/s12870-019-1788-9. (PMID: 10.1186/s12870-019-1788-9311959636567668)
Zhou B, Elazab A, Bort J, Sanz-SÁEz Á, Nieto-Taladriz MT, Serret MD, Araus JL (2016) Agronomic and physiological responses of Chinese facultative wheat genotypes to high-yielding Mediterranean conditions. J Agric Sci 154(5):870–889. https://doi.org/10.1017/S0021859615000817. (PMID: 10.1017/S0021859615000817)
Zia-Khan S, Spreer W, Pengnian Y, Zhao X, Othmanli H, He X, Müller J (2015) Effect of dust deposition on stomatal conductance and leaf temperature of cotton in northwest China. Water 7(1):116–131. https://doi.org/10.3390/w7010116. (PMID: 10.3390/w7010116)
Zimnoch M, Necki J, Chmura L, Jasek A, Jelen D, Galkowski M, Kuc T, Gorczyca Z, Bartyzel J, Rozanski K (2019) Quantification of carbon dioxide and methane emissions in urban areas: Source apportionment based on atmospheric observations. Mitig Adapt Strat Glob Change 24(6):1051–1071. https://doi.org/10.1007/s11027-018-9821-0. (PMID: 10.1007/s11027-018-9821-0)
معلومات مُعتمدة: 2018FYD0200701 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: Air pollutants; Antioxidants; Fertility; Food quality; Yield
المشرفين على المادة: 0 (Air Pollutants)
0 (Soil)
تواريخ الأحداث: Date Created: 20220913 Date Completed: 20220914 Latest Revision: 20220914
رمز التحديث: 20231215
DOI: 10.1007/s00425-022-03993-1
PMID: 36097229
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2048
DOI:10.1007/s00425-022-03993-1