دورية أكاديمية

Synchrotron XFM tomography for elucidating metals and metalloids in hyperaccumulator plants.

التفاصيل البيبلوغرافية
العنوان: Synchrotron XFM tomography for elucidating metals and metalloids in hyperaccumulator plants.
المؤلفون: Spiers KM; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany., Brueckner D; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.; Department of Physics, University of Hamburg, Hamburg, Germany.; Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany., Garrevoet J; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany., Falkenberg G; Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany., van der Ent A; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Australia.
المصدر: Metallomics : integrated biometal science [Metallomics] 2022 Nov 23; Vol. 14 (11).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101478346 Publication Model: Print Cited Medium: Internet ISSN: 1756-591X (Electronic) Linking ISSN: 17565901 NLM ISO Abbreviation: Metallomics Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Cambridge : RSC Publishing, c2009-
مواضيع طبية MeSH: Metalloids* , Trace Elements*, Synchrotrons ; Metals/analysis ; Plants/chemistry ; Microscopy, Fluorescence/methods ; Tomography, X-Ray
مستخلص: Visualizing the endogenous distribution of elements within plant organs affords key insights in the regulation of trace elements in plants. Hyperaccumulators have extreme metal(loid) concentrations in their tissues, which make them useful models for studying metal(loid) homeostasis in plants. X-ray-based methods allow for the nondestructive analysis of most macro and trace elements with low limits of detection. However, observing the internal distributions of elements within plant organs still typically requires destructive sample preparation methods, including sectioning, for synchrotron X-ray fluorescence microscopy (XFM). X-ray fluorescence microscopy-computed tomography (XFM-CT) enables "virtual sectioning" of a sample thereby entirely avoiding artefacts arising from destructive sample preparation. The method can be used on frozen-hydrated samples, as such preserving "life-like" conditions. Absorption and Compton scattering maps obtained from synchrotron XFM-CT offer exquisite detail on structural features that can be used in concert with elemental data to interpret the results. In this article we introduce the technique and use it to reveal the internal distribution of hyperaccumulated elements in hyperaccumulator plant species. XFM-CT can be used to effectively probe the distribution of a range of different elements in plant tissues/organs, which has wide ranging applications across the plant sciences.
(© The Author(s) 2022. Published by Oxford University Press.)
References: New Phytol. 2018 Apr;218(2):432-452. (PMID: 28994153)
New Phytol. 2007;175(4):641-654. (PMID: 17688581)
Sci Total Environ. 2022 Sep 10;838(Pt 2):155899. (PMID: 35569660)
Science. 2006 Nov 24;314(5803):1295-8. (PMID: 17082420)
J Microsc. 2007 Dec;228(Pt 3):257-63. (PMID: 18045320)
Opt Express. 2016 Oct 31;24(22):25129-25147. (PMID: 27828452)
Plant Physiol. 2013 Apr;161(4):1820-9. (PMID: 23463781)
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15676-80. (PMID: 20720164)
New Phytol. 2003 Aug;159(2):351-360. (PMID: 33873356)
J Synchrotron Radiat. 2016 Nov 1;23(Pt 6):1550-1560. (PMID: 27787262)
J Nucl Med. 2002 Oct;43(10):1343-58. (PMID: 12368373)
Opt Express. 2017 Jun 12;25(12):13107-13124. (PMID: 28788848)
PLoS One. 2014 Jan 09;9(1):e84675. (PMID: 24416264)
Metallomics. 2020 Feb 1;12(2):193-203. (PMID: 31845691)
J Synchrotron Radiat. 2014 Jan;21(Pt 1):66-75. (PMID: 24365918)
Int J Phytoremediation. 2015;17(1-6):464-75. (PMID: 25495937)
Environ Sci Technol. 2004 Oct 1;38(19):5095-100. (PMID: 15506204)
New Phytol. 2018 Apr;218(2):397-400. (PMID: 29561072)
Plant Physiol. 2018 Oct;178(2):507-523. (PMID: 30108140)
J Exp Bot. 2016 Aug;67(15):4639-46. (PMID: 27340233)
Plant Physiol. 2020 Apr;182(4):1869-1882. (PMID: 31974126)
Environ Sci Technol. 2005 Apr 1;39(7):2210-8. (PMID: 15871256)
PLoS One. 2011;6(6):e20626. (PMID: 21674049)
Environ Sci Technol. 2015 Apr 21;49(8):4773-80. (PMID: 25700109)
Plant Physiol. 2003 Mar;131(3):1460-7. (PMID: 12644695)
Environ Sci Technol. 2020 Jan 21;54(2):745-757. (PMID: 31891245)
Plant Biol (Stuttg). 2022 Jan;24(1):23-29. (PMID: 34546650)
Metallomics. 2022 Jun 23;14(5):. (PMID: 35746898)
J Synchrotron Radiat. 2020 Jan 1;27(Pt 1):60-66. (PMID: 31868737)
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1188-93. (PMID: 25178011)
Plant Physiol. 2013 Nov;163(3):1396-408. (PMID: 24058164)
Opt Express. 2011 Oct 24;19(22):21345-57. (PMID: 22108985)
Plant Physiol. 2011 Jun;156(2):663-73. (PMID: 21525332)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
Environ Sci Technol. 2014 Mar 18;48(6):3344-53. (PMID: 24559272)
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1447-1458. (PMID: 32876622)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Plant Physiol. 2016 Nov;172(3):1657-1668. (PMID: 27613852)
Ann Bot. 2020 Mar 29;125(4):599-610. (PMID: 31777920)
Metallomics. 2019 Dec 11;11(12):2052-2065. (PMID: 31651002)
Nature. 2001 Feb 1;409(6820):579. (PMID: 11214308)
Anal Chem. 2018 Feb 6;90(3):2389-2394. (PMID: 29318875)
Curr Opin Struct Biol. 2010 Oct;20(5):606-14. (PMID: 20934872)
فهرسة مساهمة: Keywords: X-ray fluorescence microscopy-computed tomography; hyperaccumulator; imaging; metal/metalloid; synchrotron
المشرفين على المادة: 0 (Metalloids)
0 (Trace Elements)
0 (Metals)
تواريخ الأحداث: Date Created: 20220913 Date Completed: 20221125 Latest Revision: 20230412
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9683111
DOI: 10.1093/mtomcs/mfac069
PMID: 36099903
قاعدة البيانات: MEDLINE
الوصف
تدمد:1756-591X
DOI:10.1093/mtomcs/mfac069