دورية أكاديمية

Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing.

التفاصيل البيبلوغرافية
العنوان: Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing.
المؤلفون: Simmons SK; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Lithwick-Yanai G; Ultima Genomics, Newark, CA, USA., Adiconis X; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Oberstrass F; Ultima Genomics, Newark, CA, USA., Iremadze N; Ultima Genomics, Newark, CA, USA., Geiger-Schuller K; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Thakore PI; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Frangieh CJ; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA., Barad O; Ultima Genomics, Newark, CA, USA., Almogy G; Ultima Genomics, Newark, CA, USA., Rozenblatt-Rosen O; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Regev A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Biology, MIT, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Lipson D; Ultima Genomics, Newark, CA, USA., Levin JZ; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. jlevin@broadinstitute.org.; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. jlevin@broadinstitute.org.
المصدر: Nature biotechnology [Nat Biotechnol] 2023 Feb; Vol. 41 (2), pp. 204-211. Date of Electronic Publication: 2022 Sep 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature America Publishing Country of Publication: United States NLM ID: 9604648 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1696 (Electronic) Linking ISSN: 10870156 NLM ISO Abbreviation: Nat Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature America Publishing
Original Publication: New York, NY : Nature Pub. Co., [1996-
مواضيع طبية MeSH: Gene Expression Profiling*/methods , Leukocytes, Mononuclear*, Humans ; Sequence Analysis, RNA/methods ; Single-Cell Gene Expression Analysis ; Single-Cell Analysis/methods ; Nucleotides
مستخلص: Here we introduce a mostly natural sequencing-by-synthesis (mnSBS) method for single-cell RNA sequencing (scRNA-seq), adapted to the Ultima genomics platform, and systematically benchmark it against current scRNA-seq technology. mnSBS uses mostly natural, unmodified nucleotides and only a low fraction of fluorescently labeled nucleotides, which allows for high polymerase processivity and lower costs. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5' and 3' scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Benchmarking shows that results from mnSBS-based scRNA-seq are very similar to those using Illumina sequencing, with minor differences in results related to the position of reads relative to annotated gene boundaries, owing to single-end reads of Ultima being closer to gene ends than reads from Illumina. The method is thus compatible with state-of-the-art scRNA-seq libraries independent of the sequencing technology. We expect mnSBS to be of particular utility for cost-effective large-scale scRNA-seq projects.
(© 2022. The Author(s).)
References: Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017). (PMID: 29206104576215410.7554/eLife.27041)
Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020). (PMID: 32302568737649710.1016/j.cell.2020.03.053)
Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730 (2019). (PMID: 31348891666262810.1016/j.cell.2019.06.029)
Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021). (PMID: 33915569891950510.1038/s41586-021-03570-8)
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016). (PMID: 27984733531557110.1016/j.cell.2016.11.048)
Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016). (PMID: 27984732518111510.1016/j.cell.2016.11.038)
Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020). (PMID: 3180669610.1126/science.aax6234)
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). (PMID: 26000488448113910.1016/j.cell.2015.05.002)
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). (PMID: 26000487444176810.1016/j.cell.2015.04.044)
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019). (PMID: 30787437643495210.1038/s41586-019-0969-x)
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018). (PMID: 29545511764387010.1126/science.aam8999)
Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493900 (2022).
Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020). (PMID: 32341560728968610.1038/s41587-020-0465-8)
Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020). (PMID: 3251840310.1038/s41587-020-0469-4)
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017). (PMID: 28902842574604410.1038/nature24029)
Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol 20, 273 (2019). (PMID: 31836005690951410.1186/s13059-019-1865-2)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
Korsunsky, I., Nathan, A., Millard, N. & Raychaudhuri, S. Presto scales Wilcoxon and auROC analyses to millions of observations. Preprint at bioRxiv https://doi.org/10.1101/653253 (2019).
Wang, P. et al. Single-cell transcriptome and TCR profiling reveal activated and expanded T cell populations in Parkinson’s disease. Cell Discov. 7, 52 (2021). (PMID: 34282123828984910.1038/s41421-021-00280-3)
Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. eLife 8, e43803 (2019). (PMID: 31282856663907510.7554/eLife.43803)
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). (PMID: 28759029566906410.1038/nmeth.4380)
Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018). (PMID: 30567574630001510.1186/s13059-018-1603-1)
Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021). (PMID: 33649592837639910.1038/s41588-021-00779-1)
Senabouth, A. et al. Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing. NAR Genom. Bioinform. 2, lqaa034 (2020). (PMID: 33575589767134810.1093/nargab/lqaa034)
Network, B. I. C. C. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021). (PMID: 10.1038/s41586-021-03950-0)
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019). (PMID: 31375813729916110.1038/s41587-019-0206-z)
Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018). (PMID: 29472610582394410.1038/s41467-018-03149-4)
Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021). (PMID: 3328890410.1038/s41587-020-0739-1)
Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021). (PMID: 33558695809536810.1038/s41593-020-00787-0)
Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). (PMID: 2736544910.1126/science.aaf2403)
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). (PMID: 26780180474412510.1038/nbt.3437)
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011). (PMID: 10.14806/ej.17.1.200)
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016). (PMID: 27706213505182410.1371/journal.pone.0163962)
Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). (PMID: 10.1038/nature15393)
Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics 37, 4569–4571 (2021). (PMID: 10.1093/bioinformatics/btab358)
Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907 (2019). (PMID: 31266958660658910.1038/s41467-019-10756-2)
Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019). (PMID: 30902100643104410.1186/s13059-019-1662-y)
Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009). (PMID: 19304878268251210.1093/bioinformatics/btp163)
McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference. (eds van der Walt, S. & Millman, J.) 56–61 (SciPy, 2010).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011). (PMID: 21221095334618210.1038/nbt.1754)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017). (PMID: 2839831110.1038/nbt.3820)
Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012). (PMID: 22576172338976810.1093/bioinformatics/bts277)
DeBruine, Z.J., Melcher, K. & Triche, T.J. Fast and robust non-negative matrix factorization for single-cell experiments. Preprint at bioRxiv https://doi.org/10.1101/2021.09.01.458620 (2021).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
He, L. et al. NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Commun. Biol. 4, 629 (2021). (PMID: 34040149815505810.1038/s42003-021-02146-6)
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 1059217310240910.1093/nar/28.1.27)
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Use R!) 2nd Edn (Springer, 2009).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). (PMID: 2720794310.1093/bioinformatics/btw313)
Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinf. 11, 367 (2010). (PMID: 10.1186/1471-2105-11-367)
Tukey, J.W. Exploratory Data Analysis (Addison-Wesley, 1977).
معلومات مُعتمدة: R44 HG010558 United States HG NHGRI NIH HHS; R44 HG011060 United States HG NHGRI NIH HHS; F32 AI138458 United States AI NIAID NIH HHS; RM1 HG006193 United States HG NHGRI NIH HHS; United States HHMI Howard Hughes Medical Institute
المشرفين على المادة: 0 (Nucleotides)
تواريخ الأحداث: Date Created: 20220915 Date Completed: 20230217 Latest Revision: 20230314
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9931582
DOI: 10.1038/s41587-022-01452-6
PMID: 36109685
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1696
DOI:10.1038/s41587-022-01452-6