دورية أكاديمية

Unchanged nitrate and nitrite isotope fractionation during heterotrophic and Fe(II)-mixotrophic denitrification suggest a non-enzymatic link between denitrification and Fe(II) oxidation.

التفاصيل البيبلوغرافية
العنوان: Unchanged nitrate and nitrite isotope fractionation during heterotrophic and Fe(II)-mixotrophic denitrification suggest a non-enzymatic link between denitrification and Fe(II) oxidation.
المؤلفون: Visser AN; Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences, Basel University, Basel, Switzerland., Wankel SD; Stable Isotope Biogeochemistry, Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, MA, United States., Frey C; Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences, Basel University, Basel, Switzerland., Kappler A; Geomicrobiology, Center for Applied Geosciences, Eberhard Karls University, Tuebingen, Germany.; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen, Germany., Lehmann MF; Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences, Basel University, Basel, Switzerland.
المصدر: Frontiers in microbiology [Front Microbiol] 2022 Sep 02; Vol. 13, pp. 927475. Date of Electronic Publication: 2022 Sep 02 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Natural-abundance measurements of nitrate and nitrite (NO x ) isotope ratios (δ 15 N and δ 18 O) can be a valuable tool to study the biogeochemical fate of NO x species in the environment. A prerequisite for using NO x isotopes in this regard is an understanding of the mechanistic details of isotope fractionation ( 15 ε, 18 ε) associated with the biotic and abiotic NO x transformation processes involved (e.g., denitrification). However, possible impacts on isotope fractionation resulting from changing growth conditions during denitrification, different carbon substrates, or simply the presence of compounds that may be involved in NO x reduction as co-substrates [e.g., Fe(II)] remain uncertain. Here we investigated whether the type of organic substrate, i.e., short-chained organic acids, and the presence/absence of Fe(II) (mixotrophic vs. heterotrophic growth conditions) affect N and O isotope fractionation dynamics during nitrate (NO 3 - ) and nitrite (NO 2 - ) reduction in laboratory experiments with three strains of putative nitrate-dependent Fe(II)-oxidizing bacteria and one canonical denitrifier. Our results revealed that 15 ε and 18 ε values obtained for heterotrophic ( 15 ε-NO 3 - : 17.6 ± 2.8‰, 18 ε-NO 3 - :18.1 ± 2.5‰; 15 ε-NO 2 - : 14.4 ± 3.2‰) vs. mixotrophic ( 15 ε-NO 3 - : 20.2 ± 1.4‰, 18 ε-NO 3 - : 19.5 ± 1.5‰; 15 ε-NO 2 - : 16.1 ± 1.4‰) growth conditions are very similar and fall within the range previously reported for classical heterotrophic denitrification. Moreover, availability of different short-chain organic acids (succinate vs. acetate), while slightly affecting the NO x reduction dynamics, did not produce distinct differences in N and O isotope effects. N isotope fractionation in abiotic controls, although exhibiting fluctuating results, even expressed transient inverse isotope dynamics ( 15 ε-NO 2 - : -12.4 ± 1.3 ‰). These findings imply that neither the mechanisms ordaining cellular uptake of short-chain organic acids nor the presence of Fe(II) seem to systematically impact the overall N and O isotope effect during NO x reduction. The similar isotope effects detected during mixotrophic and heterotrophic NO x reduction, as well as the results obtained from the abiotic controls, may not only imply that the enzymatic control of NO x reduction in putative NDFeOx bacteria is decoupled from Fe(II) oxidation, but also that Fe(II) oxidation is indirectly driven by biologically (i.e., via organic compounds) or abiotically (catalysis via reactive surfaces) mediated processes co-occurring during heterotrophic denitrification.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2022 Visser, Wankel, Frey, Kappler and Lehmann.)
References: Appl Environ Microbiol. 2016 Sep 30;82(20):6120-6131. (PMID: 27496777)
Environ Sci Technol. 2012 May 1;46(9):4861-8. (PMID: 22458947)
J Bacteriol. 2012 May;194(10):2767-8. (PMID: 22535943)
Appl Environ Microbiol. 2015 Sep 1;81(17):5927-37. (PMID: 26092463)
FEMS Microbiol Ecol. 2019 Apr 1;95(4):. (PMID: 30844067)
Water Res. 2008 Oct;42(16):4215-32. (PMID: 18721996)
Anal Chem. 2005 Sep 1;77(17):5589-95. (PMID: 16131070)
Arch Microbiol. 1981 Jul;129(5):395-400. (PMID: 7283636)
Appl Environ Microbiol. 2005 Sep;71(9):5267-74. (PMID: 16151113)
Biochem J. 1975 Dec;152(3):647-54. (PMID: 5999)
Microbiology (Reading). 2000 Nov;146 ( Pt 11):2977-2985. (PMID: 11065376)
Appl Environ Microbiol. 2013 Apr;79(8):2818-22. (PMID: 23396327)
FEBS J. 2015 Jun;282(12):2394-407. (PMID: 25846030)
Appl Environ Microbiol. 1986 May;51(5):938-45. (PMID: 16347068)
Geobiology. 2013 Mar;11(2):180-90. (PMID: 23205609)
Microbiol Resour Announc. 2018 Sep 13;7(10):. (PMID: 30533623)
Bioprocess Biosyst Eng. 2016 Feb;39(2):277-84. (PMID: 26650718)
Anal Chim Acta. 2007 Sep 26;600(1-2):177-82. (PMID: 17903481)
ISME J. 2013 Aug;7(8):1582-94. (PMID: 23514778)
J Bacteriol. 2011 Sep;193(17):4307-16. (PMID: 21725012)
EcoSal Plus. 2016 Jun;7(1):. (PMID: 27415771)
Arch Microbiol. 2000 Nov;174(5):314-21. (PMID: 11131021)
Environ Sci Technol. 2014 Nov 18;48(22):13229-37. (PMID: 25347214)
FEMS Microbiol Ecol. 2021 Nov 13;97(11):. (PMID: 34724047)
J Contam Hydrol. 2015 Dec;183:72-81. (PMID: 26529303)
Sci Total Environ. 2008 Mar 15;392(1):157-65. (PMID: 18086487)
FEMS Microbiol Ecol. 2009 Dec;70(3):335-43. (PMID: 19732145)
Environ Sci Technol. 2017 Dec 5;51(23):13678-13688. (PMID: 29083886)
J Bacteriol. 2012 May;194(9):2400-1. (PMID: 22493205)
Eur J Biochem. 1988 Oct 1;176(3):497-508. (PMID: 3049083)
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6391-E6400. (PMID: 27702902)
Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616. (PMID: 9409151)
J Bacteriol. 2010 Mar;192(5):1475-6. (PMID: 20023012)
J Biol Chem. 1983 Jul 25;258(14):8613-7. (PMID: 6863303)
J Bacteriol. 2009 Feb;191(3):940-8. (PMID: 19028892)
FEMS Microbiol Ecol. 2022 Jan 11;97(12):. (PMID: 34849752)
Front Microbiol. 2012 Mar 29;3:112. (PMID: 22479259)
ISME J. 2015 Dec;9(12):2630-41. (PMID: 26161636)
Syst Appl Microbiol. 2022 May;45(3):126306. (PMID: 35279466)
Microbiol Rev. 1982 Mar;46(1):43-70. (PMID: 7045624)
Environ Sci Technol. 2012 Jun 5;46(11):5727-35. (PMID: 22534036)
Water Res. 2020 Mar 1;170:115300. (PMID: 31756614)
Environ Sci Technol. 2018 May 15;52(10):5753-5763. (PMID: 29671587)
Appl Environ Microbiol. 2018 Apr 16;84(9):. (PMID: 29500257)
Bacteriol Rev. 1971 Jun;35(2):87-116. (PMID: 4935534)
Appl Environ Microbiol. 2015 May 15;81(10):3510-7. (PMID: 25769828)
Appl Environ Microbiol. 2014 Feb;80(3):1051-61. (PMID: 24271182)
Rapid Commun Mass Spectrom. 2009 Dec;23(23):3753-62. (PMID: 19908214)
FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37. (PMID: 12829269)
Geobiology. 2016 Nov;14(6):575-587. (PMID: 27418276)
Biochem J. 2009 Jan 1;417(1):297-304. (PMID: 18691156)
Front Microbiol. 2012 Feb 20;3:57. (PMID: 22363331)
Environ Sci Technol. 2015 Mar 17;49(6):3444-52. (PMID: 25683572)
J Bacteriol. 2013 Jul;195(14):3260-8. (PMID: 23687275)
Nat Rev Microbiol. 2006 Oct;4(10):752-64. (PMID: 16980937)
Appl Environ Microbiol. 2011 Dec;77(24):8548-56. (PMID: 22003007)
Environ Microbiol. 2018 Oct;20(10):3462-3483. (PMID: 30058270)
Oecologia. 2016 Jul;181(3):919-30. (PMID: 27038993)
Front Microbiol. 2012 Feb 08;3:37. (PMID: 22347878)
ISME J. 2020 Aug;14(8):2034-2045. (PMID: 32372050)
Cell Mol Life Sci. 2001 Feb;58(2):215-24. (PMID: 11289303)
Appl Environ Microbiol. 2017 Jun 16;83(13):. (PMID: 28455336)
J Bacteriol. 2010 Jun;192(11):2900-7. (PMID: 20363944)
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18395-400. (PMID: 23090993)
Appl Environ Microbiol. 2018 Apr 16;84(9):. (PMID: 29500258)
Environ Technol. 2010 Jun;31(7):799-814. (PMID: 20586242)
Environ Microbiol. 2016 Dec;18(12):5288-5302. (PMID: 27768826)
Environ Sci Technol. 2021 Apr 20;55(8):5537-5546. (PMID: 33687201)
Anal Chem. 2001 Sep 1;73(17):4145-53. (PMID: 11569803)
Environ Microbiol. 2017 Mar;19(3):842-846. (PMID: 28168803)
Front Microbiol. 2017 Aug 21;8:1584. (PMID: 28871245)
Microbes Environ. 2016 Sep 29;31(3):293-8. (PMID: 27431373)
Biochim Biophys Acta. 2013 Feb;1827(2):161-75. (PMID: 23044392)
فهرسة مساهمة: Keywords: carbon substrate; denitrification; iron oxidation; isotope fractionation; nitrate/nitrite isotopes
تواريخ الأحداث: Date Created: 20220919 Latest Revision: 20220920
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9478938
DOI: 10.3389/fmicb.2022.927475
PMID: 36118224
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2022.927475