دورية أكاديمية

Hydrothermal synthesis of CuO@MnO 2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications.

التفاصيل البيبلوغرافية
العنوان: Hydrothermal synthesis of CuO@MnO 2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications.
المؤلفون: Kakani V; Department of Integrated System Engineering, Inha University, 100 Inha-ro, Nam-gu, 22212, Incheon, Republic of Korea., Ramesh S; Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Pil-dong, Jung-gu, 04620, Seoul, Republic of Korea., Yadav HM; School of Nanoscience and Bio-Technology, Shivaji University, Kolhapur, 416004, India., Bathula C; Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 04620, Seoul, Republic of Korea., Basivi PK; Department of Chemistry, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India., Palem RR; Department of Medical Biotechnology, Dongguk University, 10326, Gyeonggi, Republic of Korea., Kim HS; Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Pil-dong, Jung-gu, 04620, Seoul, Republic of Korea., Pasupuletti VR; Department of Biomedical Sciences & Therapeutics, University Malaysia Sabah, 88400, Kota Kinabalu Sabah, Malaysia.; Department of Biochemistry, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, 28292, Riau, Indonesia., Lee H; Department of Environmental Engineering, Inha University, 100 Inha-ro, Nam-gu, 22212, Incheon, Republic of Korea. leehd@inha.ac.kr., Kim H; Department of Electrical and Computer Engineering, Inha University, 100 Inha-ro, Nam-gu, 22212, Incheon, Republic of Korea. hikim@inha.ac.kr.
المصدر: Scientific reports [Sci Rep] 2022 Sep 20; Vol. 12 (1), pp. 12951. Date of Electronic Publication: 2022 Sep 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been used to fabricate nanostructured materials for various energy devices, such as supercapacitors, sensors, batteries, and electrocatalysts. Nitrogen-doped carbon-based electrodes have been widely used to improve supercapacitor applications via various chemical approaches. Based on previous studies, CuO@MnO 2 and CuO@MnO 2 /N-MWCNT composites were synthesized using a sonication-supported hydrothermal reaction process to evaluate their supercapacitor properties. The structural and morphological properties of the synthesized composite materials were characterized via Raman spectroscopy, XRD, SEM, and SEM-EDX, and the morphological properties of the composite materials were confirmed by the nanostructured composite at the nanometer scale. The CuO@MnO 2 and CuO@MnO 2 /N-MWCNT composite electrodes were fabricated in a three-electrode configuration, and electrochemical analysis was performed via CV, GCD, and EIS. The composite electrodes exhibited the specific capacitance of ~ 184 F g -1 at 0.5 A g -1 in the presence of a 5 M KOH electrolyte for the three-electrode supercapacitor application. Furthermore, it exhibited significantly improved specific capacitances and excellent cycling stability up to 5000 GCD cycles, with a 98.5% capacity retention.
(© 2022. The Author(s).)
References: Lou, X. W., Archer, L. A. & Yang, Z. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987–4019 (2008). (PMID: 10.1002/adma.200800854)
Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical super-capacitors. Chem. Soc. Rev. 41, 797–828 (2012). (PMID: 2177960910.1039/C1CS15060J)
Ouyang, L., Hsiao, C.-H., Chen, Y.-C., Lee, C. Y. & Tai, N. H. Fabrication of Ni-Mn LDH/Co3O4 on carbon paper for the application in supercapacitors. Surf. Interface 28, 101574 (2021). (PMID: 10.1016/j.surfin.2021.101574)
Fan, Z. et al. Asymmetric supercapacitors based on graphene/MnO 2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011). (PMID: 10.1002/adfm.201100058)
Ramesh, S. et al. Core shell nanostructured of Co 3 O 4 @RuO 2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application. J. Alloy. Compd. 877, 160297–160297 (2021). (PMID: 10.1016/j.jallcom.2021.160297)
Racik, M. et al. Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Physica E 119, 114033 (2020). (PMID: 10.1016/j.physe.2020.114033)
Lei, Z., Zhang, J. & Zhao, X. S. Ultrathin MnO 2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 22, 153–160 (2012). (PMID: 10.1039/C1JM13872C)
Ramesh, S. et al. Nanostructured CuO/Co 2 O 4 @ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors. Compos. B Eng. 166, 74–85 (2019). (PMID: 10.1016/j.compositesb.2018.11.116)
Bathula, C., Rabani, I. & Ramesh, S. Highly efficient solid-state synthesis of Co 3 O 4 on multiwalled carbon nanotubes for supercapacitors. J. Alloy. Compd. 887, 161307–161307 (2021). (PMID: 10.1016/j.jallcom.2021.161307)
Li, Q. et al. Design and synthesis of MnO 2 /Mn/MnO 2 sandwich-structured nanotube arrays with high super capacitive performance for electrochemical energy storage. Nano Lett. 12, 3803–3830 (2012). (PMID: 2273091810.1021/nl301748m)
Zhang, H. & Zhang, M. Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors. Mater. Chem. Phys. 108, 184–188 (2008). (PMID: 10.1016/j.matchemphys.2007.10.005)
Khan, M. A., Wahab, Y., Muhammad, R., Tahir, M. & Sakrani, S. Catalyst-free fabrication of novel ZnO/CuO Core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties. Appl. Surf. Sci. 435, 718–732 (2018). (PMID: 10.1016/j.apsusc.2017.11.071)
Ramesh, S. et al. Fabrication of nanostructured SnO 2 @Co 3 O 4 /nitrogen doped graphene oxide composite for symmetric and asymmetric storage devices. J. Mater. Res. Technol. 9, 4183–4193 (2020). (PMID: 10.1016/j.jmrt.2020.02.045)
Ramesh, S., Karuppasamy, K., Kim, H. S., Kim, H. S. & Kim, J.-H. Hierarchical flowerlike 3D nanostructure of Co 3 O 4 @MnO 2 /N-doped graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8, 16543 (2018). (PMID: 30410051622458510.1038/s41598-018-34905-7)
Zhang, Y. X., Li, F. & Huang, M. One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater. Lett. 112, 203–206 (2013). (PMID: 10.1016/j.matlet.2013.09.032)
Feng, Q., Kanoh, H. & Ooi, K. Manganese oxide porous crystals. J. Mater. Chem. 9(2), 319–333 (1999). (PMID: 10.1039/a805369c)
Zhou, Y. et al. High-performance hierarchical MnO 2 /CNT electrode for multifunctional supercapacitors. Carbon 184, 504–513 (2021). (PMID: 10.1016/j.carbon.2021.08.051)
Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO 2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). (PMID: 10.1021/cm049649j)
Gueon, D. & Moon, J. H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: Emulsion-assisted compact packing and capacitance enhancement. ACS Appl. Mater. Interfaces 7, 20083–20089 (2015). (PMID: 2632550810.1021/acsami.5b05231)
Huang, M., Li, F., Dong, F., Zhang, Y. X. & Zhang, L. L. MnO 2 -based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3(43), 21380–21423 (2015). (PMID: 10.1039/C5TA05523G)
Zhang, Y., Guo, W. W., Zhang, Z. T. X. & Fan, Y. X. Engineering hierarchical Di-atom@CuO@MnO2 hybrid for high performance supercapacitor. Appl. Surf. Sci. 427, 1158–1165 (2018). (PMID: 10.1016/j.apsusc.2017.09.064)
Guo, X. L., Li, G., Kuang, M. & Zhang, Y. L. Tailoring kirkendall effect of the KCu 7 S 4 microwires towards CuO@MnO 2 core-shell nanostructures for supercapacitors. Electrochim. Acta 174, 87–92 (2015). (PMID: 10.1016/j.electacta.2015.05.157)
Wang, J. G., Huang, Y. Y. & Kang, Z. H. Synthesis and electrochemical performance of MnO 2 /CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012). (PMID: 10.1016/j.electacta.2012.04.088)
Chavhan, J., Rathod, R., Tandon, V., Umare, S. & Patel, A. Structural and physico-chemical properties of electroactive polyamide/multi-walled carbon nanotubes nanocomposites. Surf. Interfaces 29, 101765–101782 (2022). (PMID: 10.1016/j.surfin.2022.101765)
Deng, M. J. et al. Facile electrochemical synthesis of 3D nano-architecture CuO electrodes for high-performance supercapacitors. J. Mater. Chem. A 2, 12857–12865 (2014). (PMID: 10.1039/C4TA02444C)
Li, Y. et al. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim. Acta 85, 393–398 (2012). (PMID: 10.1016/j.electacta.2012.07.127)
Wang, G., Huang, J., Chen, S., Gao, Y. & Cao, D. Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756 (2011). (PMID: 10.1016/j.jpowsour.2011.02.049)
Subramanian, V., Zhu, H. & Wei, B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Power Source 159, 361–364 (2006). (PMID: 10.1016/j.jpowsour.2006.04.012)
Mishra, A. K., Das, N. A. K. & Pradhan, A. K. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C 122, 11249–11253 (2018). (PMID: 10.1021/acs.jpcc.8b02210)
Deng, L. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO 2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 89, 191–198 (2013). (PMID: 10.1016/j.electacta.2012.10.106)
Yu, L., Zhang, G., Yuan, C. & Lou, X. Hierarchical NiCo 2 O 4 @MnO 2 core-shell heterostructure nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49, 137–139 (2013). (PMID: 10.1039/C2CC37117K)
Wei, W., Cui, X., Chen, W. & Ivey, D. G. Manganese oxide-based materials as electrochemical super-capacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011). (PMID: 2117397310.1039/C0CS00127A)
Liu, J. Co 3 O 4 nanowire@MnO 2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 23, 2076–2081 (2011). (PMID: 2141308510.1002/adma.201100058)
Guo, C. X., Wang, M., Chen, T., Li, L. X. W. & Li, C. M. A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium-ion batteries. Adv. Energy Mater. 1, 736–741 (2011). (PMID: 10.1002/aenm.201100223)
Zhang, Y. Crystallization design of MnO 2 towards better supercapacitance. Cryst. Eng. Commun. 14, 5892–5897 (2012). (PMID: 10.1039/c2ce25610j)
Kim, H. & Popov, B. N. Synthesis and characterization of MnO 2 -based mixed oxides as supercapacitors. J. Electrochem. Soc. 150, 56–62 (2003). (PMID: 10.1149/1.1541675)
Gholivand, M. B., Heydari, H., Abdolmaleki, A. & Hosseini, H. Nanostructured CuO/PANI composite as supercapacitor electrode material. Mater. Sci. Semicond. Process 30, 157–161 (2015). (PMID: 10.1016/j.mssp.2014.09.047)
Zhao, Y., Jiang, P. & Xie, S. S. ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. J. Power Sources 239, 393–398 (2013). (PMID: 10.1016/j.jpowsour.2013.03.176)
Kumar, R., Manoj, D. & Santhanalakshmi, D. J. Optimization of site-specific adsorption of oleylamine capped CuO nanoparticles on MWCNTs for electrochemical determination of guanosine. Sens. Actuator B Chem. 188, 603–612 (2013). (PMID: 10.1016/j.snb.2013.07.067)
Zhi, M., Manivannan, A., Meng, F. & Wu, N. Highly conductive electrospun carbon nanofiber/MnO 2 coaxial nano-cables for high energy and power density supercapacitors. J. Power Sources 208, 345–353 (2012). (PMID: 10.1016/j.jpowsour.2012.02.048)
Ramesh, S. et al. Sheet-like morphology CuCo 2 O 4 bimetallic nanoparticles adorned on graphene oxide composites for symmetrical energy storage applications. J. Alloy. Compd. 892, 162182–162182 (2021). (PMID: 10.1016/j.jallcom.2021.162182)
Pendashteh, A., Mousavi, M. F. & Rahmanifar, M. S. Fabrication anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic co-precipitation and its application as supercapacitor. Electrochim. Acta 88, 347–357 (2013). (PMID: 10.1016/j.electacta.2012.10.088)
Palem, R. S. R. R. et al. Enhanced super capacitive behavior by CuO@MnO 2 /carboxymethyl cellulose composites. Ceram. Int. 47, 26738–26747 (2021). (PMID: 10.1016/j.ceramint.2021.06.081)
Zhang, Y. X. et al. Facile synthesis of mesoporous CuO nanoribbons for electrochemical capacitors applications. Int. J. Electrochem. Sci. 8, 1366–1381 (2013).
Haldorai, Y., Voit, W. & Shim, J.-J. Nano ZnO @ reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014). (PMID: 10.1016/j.electacta.2013.12.063)
Ramesh, K. S. et al. Hierarchical Co 3 O 4 decorated nitrogen-doped graphene oxide nanosheets for energy storage and gas sensing applications. J. Ind. Eng. Chem. 101, 253–261 (2021). (PMID: 10.1016/j.jiec.2021.06.007)
Purushothaman, K. K., Saravanakumar, B., Babu, I. M., Sethuraman, B. & Muralidharan, G. Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4, 23485–23491 (2014). (PMID: 10.1039/c4ra02107j)
Ramesh, S. et al. Hexagonal nanostructured cobalt oxide @nitrogen doped multiwalled carbon nanotubes/polypyyrole composite for supercapacitor and electrochemical glucose sensor. Colloids Surf. B Bio Interfaces 205, 111840–111888 (2021). (PMID: 10.1016/j.colsurfb.2021.111840)
Yadav, H. M. et al. Nanorods to hexagonal nanosheets of CuO-doped manganese oxide nanostructures for higher electrochemical supercapacitor performance. Colloids Surf. B Biointerfaces 184, 110500–110500 (2019). (PMID: 3154188910.1016/j.colsurfb.2019.110500)
Karuppasamy, K. et al. Highly porous, hierarchical microglobules of Co 3 O 4 embedded N-doped carbon matrix for high performance asymmetric supercapacitors. Appl. Surf. Sci. 529, 147147–147147 (2020). (PMID: 10.1016/j.apsusc.2020.147147)
Reddy, A. L. M. & Ramaprabhu, S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J. Phys. Chem. C 111, 7727–7734 (2007). (PMID: 10.1021/jp069006m)
Kathalingam, A. et al. Nanosheet-like ZnCo 2 O 4 @nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: Effect of polyaniline incorporation. J. Alloy. Compds. 830, 154734–154734 (2020). (PMID: 10.1016/j.jallcom.2020.154734)
Liu, C., Li, F. & Cheng, M. L. P. Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010). (PMID: 10.1002/adma.200903328)
Abdullah, A., Parveen, N., Ahmad, F., Alam, M. W. & Ansari, S. A. Self-assembled cube-like copper oxide derived from a metal-organic framework as a high-performance electrochemical supercapacitive electrode material. Sci. Rep. 9, 1–10 (2019).
Kakani, V. et al. Facile synthesis of CuO/NiO/nitrogen doped rGO by ultrasonication for high performance supercapacitors. J. Alloy. Compd. 847, 156411–156421 (2020). (PMID: 10.1016/j.jallcom.2020.156411)
تواريخ الأحداث: Date Created: 20220920 Latest Revision: 20221117
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9489798
DOI: 10.1038/s41598-022-16863-3
PMID: 36127493
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-16863-3