دورية أكاديمية

Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA.

التفاصيل البيبلوغرافية
العنوان: Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA.
المؤلفون: Farag AM; U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA. aida_farag@usgs.gov., Harper DD; U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA., Cozzarelli IM; U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA., Kent DB; U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA., Mumford AC; U.S. Geological Survey, Laboratory Analytical Services Division, Reston, VA, USA., Akob DM; U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA., Schaeffer T; U.S. Geological Survey, Columbia Environmental Research Center, Yankton Field Research Station, Yankton, SD, USA., Iwanowicz LR; U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV, USA.
المصدر: Archives of environmental contamination and toxicology [Arch Environ Contam Toxicol] 2022 Oct; Vol. 83 (3), pp. 253-271. Date of Electronic Publication: 2022 Sep 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: United States NLM ID: 0357245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0703 (Electronic) Linking ISSN: 00904341 NLM ISO Abbreviation: Arch Environ Contam Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, Springer-Verlag.
مواضيع طبية MeSH: Ammonium Compounds*/analysis , Cyprinidae*/physiology , Perches* , Water Pollutants, Chemical*/analysis , Water Pollutants, Chemical*/toxicity, Animals ; Ammonia/analysis ; Ice/analysis ; North Dakota ; Rivers/chemistry ; Wastewater/chemistry ; Nitrogen/analysis
مستخلص: A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH 4 /L with an associated NH 3  of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.
(© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Toxicological profile for strontium. U.S. Department of Health and Human Services, U.S. Public Health Service. Atlanta, GA. xxii + 387 pp.
Akob DM, Mumford A, Orem WH, Engle M, Klinges JG, Kent DB, Cozzarelli IM (2016) Wastewater disposal from unconventional oil and gas development degrades stream quality at a West Virginia injection facility. Environ Sci Technol 50(11):5517–5525. https://doi.org/10.1021/acs.est.6b00428. (PMID: 10.1021/acs.est.6b00428)
An BA, Shen Y, Voordouw G (2017) Control of sulfide production in high salinity Bakken Shale oil reservoirs by halophilic bacteria reducing nitrate to nitrite. Frontiers Microbiol 8:1164. https://doi.org/10.3389/fmicb.2017.01164. (PMID: 10.3389/fmicb.2017.01164)
Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75(2):129–137. https://doi.org/10.3354/ame01753. (PMID: 10.3354/ame01753)
Arancibia SA, Espinoza-Navarro O, Ferreccio C (2011) Boron exposure assessment using drinking water and urine in the North of Chile. Sci Total Environ 410–411:96–101. https://doi.org/10.1016/j.scitotenv.2011.08.073. (PMID: 10.1016/j.scitotenv.2011.08.073)
Bailey TR, Lear CH (2006) Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: a case study from the River Ehen, Cumbria. UK Geochem Geophys Geosystems 7(3):Q03019. https://doi.org/10.1029/2005GC001084. (PMID: 10.1029/2005GC001084)
Chen See JR, Ulrich N, Nwanosike H, McLimans CJ, Tokarev V, Wright JR, Campa MF, Grant CJ, Hazen TC, Niles JM, Ressler D, Lamendella R (2018) Bacterial biomarkers of Marcellus Shale activity in Pennsylvania. Front Microbiol 9:1697. https://doi.org/10.3389/fmicb.2018.01697. (PMID: 10.3389/fmicb.2018.01697)
Ciparis S, Iwanowicz LR, Voshell JR (2012) Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams. Sci Total Environ 414(1):268–276. https://doi.org/10.1016/j.scitotenv.2011.10.017. (PMID: 10.1016/j.scitotenv.2011.10.017)
Clark CE, Veil JA (2009) Produced water volumes and management practices in the United States. Argonne National Lab, Argonne, Illinois. https://doi.org/10.2172/1007397. (PMID: 10.2172/1007397)
Cleveland D, Hinck JE, Lankton JS (2021) Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed. Chemosphere 263:127908. https://doi.org/10.1016/j.chemosphere.2020.127908. (PMID: 10.1016/j.chemosphere.2020.127908)
Cloutier NR, Clulow FV, Lim TP, Davé NK (1985) Metal (Cu, Ni, Fe Co, Zn, Pb) and Ra-226 levels in meadow voles Microtus pennsylvanicus living on nickel and uranium mine tailings in Ontario, Canada: environmental and tissue levels. Environ Pollut (series b) 10(1):19–46. https://doi.org/10.1016/0143-148X(85)90014-X. (PMID: 10.1016/0143-148X(85)90014-X)
Clulow FV, Mirka MA, Davé NK, Lim TP (1991) 226 Ra and other radionuclides in water, vegetation, and tissues of beavers (Castor canadensis) from a watershed containing U tailings near Elliot Lake. Canada Environ Pollut 69(4):277–310. https://doi.org/10.1016/0269-7491(91)90118-G. (PMID: 10.1016/0269-7491(91)90118-G)
Cozzarelli IM, Skalak KJ, Kent DB, Engle MA, Benthem A, Mumford AC, Haase K, Farag A, Harper D, Nagel SC, Iwanowicz LR, Orem WH, Akob DM, Jaeschke JB, Galloway J, Kohler M, Stoliker DL, Jolly GD (2017) Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. Sci Total Environ 579:1781–1793. https://doi.org/10.1016/j.scitotenv.2016.11.157. (PMID: 10.1016/j.scitotenv.2016.11.157)
Cozzarelli IM, Kent DB, Briggs M, Engle MA, Benthem A, Skalak KJ, Mumford AC, Jaeschke J, Farag A, Lane JW Jr, Akob DM (2021) Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters. Sci Total Environ 755(1):142909. https://doi.org/10.1016/j.scitotenv.2020.142909. (PMID: 10.1016/j.scitotenv.2020.142909)
Delegan Y, Kocharovskaya Y, Bogun A, Sizova A, Solomentsev V, Iminova L, Lyakhovchenko N, Zinovieva A, Goyanov M, Solyanikova I (2021) Characterization and genomic analysis of Exiguobacterium alkaliphilum B-3531D, an efficient crude oil degrading strain. Biotechnol Rep 32:e00678. https://doi.org/10.1016/j.btre.2021.e00678. (PMID: 10.1016/j.btre.2021.e00678)
Fairchild JF, Allert AL, Sappington LC, Waddell B (2005) Chronic toxicity of un-ionized ammonia to early life-stages of endangered Colorado pikeminnow (Ptychocheilus lucius) and razorback sucker (Xyrauchen texanus) compared to the surrogate fathead minnow (Pimephales promelas). Arch Environ Contam Toxicol 49:378–384. https://doi.org/10.1007/s00244-004-0223-9. (PMID: 10.1007/s00244-004-0223-9)
Farag AM, Skaar D, Nimick DA, MacConnel E, Hogstrand C (2003) Characterizing aquatic health using salmonid mortality, physiology, and biomass estimates in streams with elevated concentrations of arsenic, cadmium, copper, lead, and zinc in the Boulder River watershed. Montana Trans Amer Fish Soc 132(3):450–467. https://doi.org/10.1577/1548-8659(2003)132%3C0450:CAHUSM%3E2.0.CO;2. (PMID: 10.1577/1548-8659(2003)132%3C0450:CAHUSM%3E2.0.CO;2)
Farag AM, Harper DD, Senecal A, Hubert WA (2010) Potential effects of coal bed natural gas development on fish and aquatic resources. In: Reddy KJ (ed) Coalbed natural gas: energy and environment. Nova Science Publishers, Hauppauge, New York, pp 227–242.
Farag AM, Harper DD, Skaar D (2014) In situ and laboratory toxicity of coalbed natural produced waters with elevated sodium bicarbonate. Environ Toxicol Chem 33(9):2086–2093. https://doi.org/10.1002/etc.2658. (PMID: 10.1002/etc.2658)
Goldstein JM, Hubert WA, Woodward DW, Farag AM, Meyer JS (2001) Naturalized salmonid populations occur in the presence of elevated trace element concentrations and temperatures in the Firehole River, Yellowstone National Park, Wyoming, USA. Environ Toxicol Chem 20(10):2342–2352. https://doi.org/10.1002/etc.5620201029. (PMID: 10.1002/etc.5620201029)
Harper DD (2022) Water quality and survival data for 96 hour bioassays conducted near the Blacktail Creek wastewater spill, North Dakota, 2015–17. U.S. Geological Survey data release. https://doi.org/10.5066/P9MLCVKR.
Harper DD, Farag AM, Hogstrand C, MacConnell E (2009) Trout density and health in a stream with variable water temperatures and trace element concentrations: does a cold-water source attract trout to increased metal exposure? Environ Toxicol Chem 28(4):800–808. https://doi.org/10.1897/08-072R.1. (PMID: 10.1897/08-072R.1)
Haskins DL, Hamilton MT, Jones AL, Finger JW Jr, Bringolf RB, Tuberville TD (2017) Accumulation of coal combustion residues and their immunological effects in the yellow-bellied slider (Trachemys scripta scripta). Environ Pollut 224:810–819. https://doi.org/10.1016/j.envpol.2017.01.048. (PMID: 10.1016/j.envpol.2017.01.048)
Hirunwatthanakul P, Sriplung H, Geater A (2006) Radium-contaminated water: a risk factor for cancer of the upper digestive tract. Asian Pac J Cancer Prev 7(2):295–298.
Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States - representing a decade of land cover change information. Photogramm Eng Remote Sens 81(5):345–354.
Iwanowicz LR, Smalling KL, Blazer VS, Braham RP, Sanders LR, Boetsma A, Procopio NA, Goodrow S, Buchanan GA, Millemann DR, Ruppel B, Vile J, Henning B, Abatemarco J (2020) Reconnaissance of surface water estrogenicity and the prevalence of intersex in smallmouth bass (Micropterus Dolomieu) inhabiting New Jersey. Int J Environ Res Public Health 17(6):2024. https://doi.org/10.3390/ijerph17062024. (PMID: 10.3390/ijerph17062024)
Jaeschke JB, Cozzarelli IM, Kent D, Engle M, Mumford A, Benthem A, Polite B, Baesman S (2020) Geochemistry Data from Samples Collected in 2015–2017 to study an OG wastewater spill in Blacktail Creek, North Dakota. U.S. Geological Survey data release.  https://doi.org/10.5066/P961J30G. (PMID: 10.5066/P961J30G)
Jeffree RA (1991) An experimental study of 226 Ra and 45 Ca accumulation from the aquatic medium by freshwater turtles (fam. Chelidae) under varying Ca and Mg water concentrations. Hydrobiologia 218:205–231. https://doi.org/10.1007/BF00038836. (PMID: 10.1007/BF00038836)
Jeffree RA, Simpson RD (1986) An experimental study of the uptake and loss of Ra-226 by the tissue of the tropical freshwater mussel Velesunio angasi (Sowerby) under varying Ca and Mg water concentrations. Hydrobiologia 139:59–80. https://doi.org/10.1007/BF00770242. (PMID: 10.1007/BF00770242)
Kassotis CD, Iwanowicz LR, Akob DM, Cozzarelli IM, Mumford AC, Orem WH, Nagel SC (2016) Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Sci Total Environ 557–558:901–910. https://doi.org/10.1016/j.scitotenv.2016.03.113. (PMID: 10.1016/j.scitotenv.2016.03.113)
Kassotis CD, Nagel SC, Stapleton HM (2018a) Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3–L1 cells. Sci Total Environ 640–641:1601–1610. https://doi.org/10.1016/j.scitotenv.2018.05.030. (PMID: 10.1016/j.scitotenv.2018.05.030)
Kassotis CD, Vu DC, Vo PH, Lin C, Cornelius-Green JN, Patton S, Nagel SC (2018b) Endocrine-disrupting activities and organic contaminants associated with oil and gas operations in Wyoming groundwater. Arch Environ Contam Toxicol 75(2):247–258. https://doi.org/10.1007/s00244-018-0521-2. (PMID: 10.1007/s00244-018-0521-2)
Khangarot BS (1991) Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller). Bull Environ Contam Toxicol 46:906–912. https://doi.org/10.1007/BF01689737. (PMID: 10.1007/BF01689737)
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. https://doi.org/10.1128/AEM.01043-13. (PMID: 10.1128/AEM.01043-13)
Liew HJ, Sinha AK, Nawata CM, Blust R, Wood CM, De Boeck G (2013) Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat Toxicol 126:63–76. https://doi.org/10.1016/j.aquatox.2012.10.012. (PMID: 10.1016/j.aquatox.2012.10.012)
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217. (PMID: 10.1371/journal.pone.0061217)
Milne I, Seager J, Mallett M, Sims I (2000) Effects of short-term pulsed ammonia exposure on fish. Environ Toxicol Chem 19(12):2929–2936. https://doi.org/10.1002/etc.5620191213. (PMID: 10.1002/etc.5620191213)
Miramontes E, Mozdziak P, Petitte JN, Kulus M, Wieczorkiewicz M, Kempisty B (2020) Skeletal muscle and the effects of ammonia toxicity in fish, mammalian, and avian species: a comparative review based on molecular research. Int J Mol Sci 21(13):4641. https://doi.org/10.3390/ijms21134641. (PMID: 10.3390/ijms21134641)
Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107(3):785–794. https://doi.org/10.1111/j.1365-2672.2009.04251.x. (PMID: 10.1111/j.1365-2672.2009.04251.x)
Moiseenko TI, Kudryavtseva LP (2001) Trace metal accumulation and fish pathologies in areas affected mining and metallurgical enterprises in the Kola Region. Russia Environ Pollut 114(2):285–297. https://doi.org/10.1016/S0269-7491(00)00197-4. (PMID: 10.1016/S0269-7491(00)00197-4)
Mothersill C, Smith R, Lariviere D, Seymour C (2013) Chronic exposure by ingestion of environmentally relevant doses of 226 Ra leads to transient growth perturbations in fathead minnow (Pimephales promelas, Rafinesque 1820). Int J Radiat Biol 89(11):950–964. https://doi.org/10.3109/09553002.2013.809817. (PMID: 10.3109/09553002.2013.809817)
Mothersill C, Larivière D, Smith RW, Thompson MP, Byun SH (2014) Dosimetric analysis of fathead minnow (Pimephales promelas, Rafinesque, 1820) exposed via ingestion to environmentally relevant activities of Ra-226 for two years. Int J Radiat Biol 90:169–178. https://doi.org/10.3109/09553002.2014.868614. (PMID: 10.3109/09553002.2014.868614)
Moyen C, Bonmort J, Roblin G (2011) Early Sr 2+ -induced effects on membrane potential, proton pumping- and ATP hydrolysis-activities of plasma membrane vesicles from maize root cells. Environ Exp Bot 70(2–3):289–296. https://doi.org/10.1016/j.envexpbot.2010.10.005. (PMID: 10.1016/j.envexpbot.2010.10.005)
Mumford AC, Maloney KO, Akob DM, Nettemann S, Proctor A, Ditty J, Ulsamer L, Lookenbill J, Cozzarelli IM (2020) Shale gas development has limited effects on stream biology and geochemistry in a gradient-based, multiparameter study in Pennsylvania. Proc Natl Acad Sci 117(7):3670–3677. https://doi.org/10.1073/pnas.1911458117. (PMID: 10.1073/pnas.1911458117)
Mumford AC, Akob DM, Farag AM, Harper DD, Cozzarelli IM, Kent D, Schaeffer T, Iwanowicz LR (2021) Microbial community composition data from Blacktail Creek near Williston, North Dakota. U.S. Geological Survey data release. https://doi.org/10.5066/P9H5UUX2. (PMID: 10.5066/P9H5UUX2)
Oksanen J, Blanchet FG, Friendly M, Kindt R., Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2020). vegan: Community Ecology Package. Version 2.5–7. https://cran.r-project.org/web/packages/vegan/vegan.pdf . Accessed Mar 2021.
Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18(5):1403–1414. https://doi.org/10.1111/1462-2920.13023. (PMID: 10.1111/1462-2920.13023)
Post Van der Burg M, Symstad AJ, Igl LD, Mushet DM, Larson DL, Sargeant GA, Harper DD, Farag AM, Tangen BA, Anteau MJ (2022) Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota—Species of conservation concern. U.S. Geological Survey Scientific Investigations Report 2017–5070–D. doi https://doi.org/10.3133/sir20175070D.
Priest ND (2019) A nontarget mechanism to explain carcinogenesis following α-irradiation. Dose-Response 17(4):15593258–19893195. https://doi.org/10.1177/1559325819893195. (PMID: 10.1177/1559325819893195)
Prosser JI, Head IM, Stein LY (2014) The Family Nitrosomonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 901–918. (PMID: 10.1007/978-3-642-30197-1_372)
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23. https://doi.org/10.1016/S0025-326X(02)00227-8. (PMID: 10.1016/S0025-326X(02)00227-8)
Rashed MN (2001) Monitoring of environmental heavy metals in fish from Nasser Lake. Environ Int 27(1):17–33. https://doi.org/10.1016/S0160-4120(01)00050-2. (PMID: 10.1016/S0160-4120(01)00050-2)
Remen M, Imsland AK, Stefansson SO, Jonassen TM, Foss A (2008) Interactive effects of ammonia and oxygen on growth and physiological status of juvenile Atlantic cod (Gadus morhua). Aquaculture 274(2–4):292–299. https://doi.org/10.1016/j.aquaculture.2007.11.032. (PMID: 10.1016/j.aquaculture.2007.11.032)
Rich AL, Crosby EC (2013) Analysis of reserve pit sludge from unconventional natural gas hydraulic fracturing and drilling operations for the presence of technologically enhanced naturally occurring radioactive material (TENORM). New Solut 23(1):117–135. https://doi.org/10.2190/NS.23.1.h. (PMID: 10.2190/NS.23.1.h)
Ross EM, Raj YL, Wesley SG, Ragan MP (2013) Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India. J Environ Radioact 115:201–206. https://doi.org/10.1016/j.jenvrad.2012.08.010. (PMID: 10.1016/j.jenvrad.2012.08.010)
Sandusky E, Robinson D (2015) Removal assessment report for Blacktail Creek Spill Williston, Williams County, North Dakota. U.S. Environmental Protection Agency, TDD No. 0001/1501–05, Document Control No. W0208.1A.000426. https://response.epa.gov/site/doc_list.aspx?site_id=9716 . Accessed 18 Apr 2022.
Schloss PD, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, Thallinger G, Van Horn D, Weber C (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09. (PMID: 10.1128/AEM.01541-09)
Schoderboeck L, Mühleggera S, Loserta A, Gaustererc C, Hornek R (2011) Effects assessment: Boron compounds in the aquatic environment. Chemosphere 82(3):483–487. https://doi.org/10.1016/j.chemosphere.2010.10.031. (PMID: 10.1016/j.chemosphere.2010.10.031)
Serefini R, Zaniboni-Filho R, Baldisserotto B (2009) Effect of combined non-ionized ammonia and dissolved oxygen levels on the survival of juvenile dourado, Salminus brasiliensis (Cuvier). J World Aquaculture Soc 40(5):695–701. https://doi.org/10.1111/j.1749-7345.2009.00289.x. (PMID: 10.1111/j.1749-7345.2009.00289.x)
Smalling KL, Anderson CW, Honeycutt RK, Cozzarelli IM, Preston T, Hossack BR (2019) Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits. Environ Pollut 248:260–268. https://doi.org/10.1016/j.envpol.2019.02.033. (PMID: 10.1016/j.envpol.2019.02.033)
Smith RW, Seymour CB, Mothersill CE (2013) Short and long term bystander effect induction by Fathead Minnows (Pimephales promelas, Rafinesque, 1820) injected with environmentally relevant whole body doses of 226 Ra. J Environ Radioact 126:133–136. https://doi.org/10.1016/j.jenvrad.2013.07.017. (PMID: 10.1016/j.jenvrad.2013.07.017)
Spencer P, Pollock R, Dubé M (2008) Effects of un-ionized ammonia on histological, endocrine, and whole organism, endpoints in slimy sculpin (Cottus cognatus). Aquat Toxicol 90(4):300–309. https://doi.org/10.1016/j.aquatox.2008.08.017. (PMID: 10.1016/j.aquatox.2008.08.017)
American Society for Testing and Materials International (ASTM) (2007) Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. E729 – 96. Philadelphia, PA.
Su Y, Sridhar BBM, Han FX, Monts DL, Diehl SV (2007) Effect of bioaccumulation of Cs and Sr natural isotopes on foliar structure and plant spectral reflectance of Indian mustard (Brassica juncea) – 8105. Water Air Soil Pollut 180(1):65–74. https://doi.org/10.1007/s11270-006-9250-7. (PMID: 10.1007/s11270-006-9250-7)
Subotić S, Spasić S, Višnjić-Jeftić Ž, Hegediš A, Krpo-Ćetković J, Mićković B, Skorić S, Lenhardt M (2013) Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicol Environ Saf 98:196–202. https://doi.org/10.1016/j.ecoenv.2013.08.020. (PMID: 10.1016/j.ecoenv.2013.08.020)
Swanson SM (1985) Food-chain transfer of U-series radionuclides in a northern Saskatchewan aquatic system. Health Phys 49(5):747–770. https://doi.org/10.1097/00004032-198511000-00008. (PMID: 10.1097/00004032-198511000-00008)
Thomas PA (2000) Radionuclides in the terrestrial ecosystem near a Canadian uranium mill-part I: distribution and doses. Health Phys 78(6):614–624. https://doi.org/10.1097/00004032-200006000-00003. (PMID: 10.1097/00004032-200006000-00003)
Thurston R, Russo R, Phillips G (1983) Acute toxicity of ammonia to Fathead Minnows. Trans Am Fish Soc 112(5):705–711. https://doi.org/10.1577/1548-8659(1983)112%3c705:ATOATF%3e2.0.CO;2. (PMID: 10.1577/1548-8659(1983)112<705:ATOATF>2.0.CO;2)
Torres L, Yadav OP, Khan E (2018) Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale. Sci Total Environ 626:867–874. https://doi.org/10.1016/j.scitotenv.2018.01.171. (PMID: 10.1016/j.scitotenv.2018.01.171)
Trexler R, Solomon C, Brislawn CJ, Wright JR, Rosenberger A, McClure EE, Grube AM, Peterson MP, Keddache M, Mason OU, Hazen TC, Grant CJ, Lamendella R (2014) Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania. Front Microbiol 5:522. https://doi.org/10.3389/fmicb.2014.00522. (PMID: 10.3389/fmicb.2014.00522)
United States Environmental Protection Agency (USEPA) (1988) Water quality standards criteria summaries: a compilation of state/federal criteria. Document Display | NEPIS | U.S. EPA. Accessed 17 May 2021.
United States Environmental Protection Agency (USEPA) (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. U.S. Environmental Protection Agency, Office of Water (4303T), EPA 821/R-02/012, Washington DC, pp viii-266. https://www.epa.gov/sites/production/files/2015-08/documents/acute-freshwater-and-marine-wet-manual&#95;2002.pdf . Accessed Mar 2021.
United States Environmental Protection Agency (USEPA) (2013) Aquatic Life Ambient Water Quality Criteria for Ammonia – Freshwater 2013. U.S. Environmental Protection Agency, Office of Water: Washington DC, PA-822-R-13–001.
Veselik DJ, Divekar S, Dakshanamurthy S, Storchan GB, Turner JM, Graham KL, Huang L, Stoica A, Martin MB (2008) Activation of estrogen receptor-alpha by the anion nitrite. Can Res 68(10):3950–3958. https://doi.org/10.1158/0008-5472.CAN-07-2783. (PMID: 10.1158/0008-5472.CAN-07-2783)
Viloria Ávila TJ, Pesantez A, Silva EV, Delgado EM, Duque P, Sajo-Bohus L (2020) Levels of radium-226 in the Rainbow Trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay,-Ecuador. Earth Sci Res J 24(1):29–34. https://doi.org/10.15446/esrj.v24n1.79728. (PMID: 10.15446/esrj.v24n1.79728)
Wajsbrot N, Gasith A, Krom MD, Popper DM (1991) Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture 92:277–288. https://doi.org/10.1016/0044-8486(91)90029-7. (PMID: 10.1016/0044-8486(91)90029-7)
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2015) Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems 1(1):e00009-00015. https://doi.org/10.1128/mSystems.00009-15. (PMID: 10.1128/mSystems.00009-15)
Wang N, Kunz JL, Cleveland D, Steevens JA, Cozzarelli IM (2019) Biological effects of elevated major ions in surface water contaminated by a produced water from oil production. Arch Environ Contam Toxicol 76(4):670–677. https://doi.org/10.1007/s00244-019-00610-3. (PMID: 10.1007/s00244-019-00610-3)
West HK, Morgan AJ, Bowker DW, Davies MS, Herbert RJ (2003) Evidence for interpopulation differences in life history parameters of adult and F1 generation Lumbricus rubellus. Pedobiologia 47(5–6):535–541. https://doi.org/10.1078/0031-4056-00225. (PMID: 10.1078/0031-4056-00225)
Wiramanaden CIE, Orr PL, Russel CK (2015) Assessment of radium-226 bioavailability and bioaccumulation downstream of decommissioned uranium operations, using the caged oligochaete (Lumbriculus variegatus). Environ Toxicol Chem 34(3):507–517. https://doi.org/10.1002/etc.2852. (PMID: 10.1002/etc.2852)
Xie H, Gu Z, He Y, Xu J, Xu C, Li L, Ye Q (2018) Microenvironment construction of strontium-calcium based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B 6:2332–2339. https://doi.org/10.1039/C8TB00306H. (PMID: 10.1039/C8TB00306H)
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42(D1):D643–D648. https://doi.org/10.1093/nar/gkt1209. (PMID: 10.1093/nar/gkt1209)
Zhao L, Schöne RB, Mertz-Kraus R (2017) Controls on strontium and barium incorporation into freshwater bivalve shells (Corbicula fluminea). Palaeogeogr Palaeoclimatol Palaeoecol 465:86–394. https://doi.org/10.1016/j.palaeo.2015.11.040. (PMID: 10.1016/j.palaeo.2015.11.040)
Zheng G, Pemberton R, Li P (2016) Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides. J Environ Radioact 152:23–27. https://doi.org/10.1016/j.jenvrad.2015.11.010. (PMID: 10.1016/j.jenvrad.2015.11.010)
فهرسة مساهمة: Keywords: Estrogenicity; Fish survival; Microbiology community; Oil and gas wastewater spill
المشرفين على المادة: 7664-41-7 (Ammonia)
0 (Ammonium Compounds)
0 (Ice)
0 (Wastewater)
0 (Water Pollutants, Chemical)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20220921 Date Completed: 20221229 Latest Revision: 20221229
رمز التحديث: 20231215
DOI: 10.1007/s00244-022-00943-6
PMID: 36129489
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0703
DOI:10.1007/s00244-022-00943-6