دورية أكاديمية

Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage.

التفاصيل البيبلوغرافية
العنوان: Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage.
المؤلفون: Li J; Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States., Serafin EK, Baccei ML
المصدر: Pain [Pain] 2023 Apr 01; Vol. 164 (4), pp. 905-917. Date of Electronic Publication: 2022 Sep 23.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 7508686 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1872-6623 (Electronic) Linking ISSN: 03043959 NLM ISO Abbreviation: Pain Subsets: MEDLINE
أسماء مطبوعة: Publication: 2015- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: Amsterdam, Elsevier/North-Holland.
مواضيع طبية MeSH: Spinal Cord Dorsal Horn* , Interneurons*, Animals ; Mice ; Female ; Male ; Animals, Newborn ; Membrane Potentials/physiology ; Nerve Fibers, Unmyelinated ; Spinal Cord
مستخلص: Abstract: The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
(Copyright © 2022 International Association for the Study of Pain.)
References: Agashkov K, Krotov V, Krasniakova M, Shevchuk D, Andrianov Y, Zabenko Y, Safronov BV, Voitenko N, Belan P. Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Scientific Rep 2019;9:19231.
Al-Khater KM, Todd AJ. Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 2009;515:629–46.
Allard J Physiological properties of the lamina I spinoparabrachial neurons in the mouse. J Physiol 2019;597:2097–113.
Andrew D. Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat. J Physiol 2010;588:117–24.
Balachandar A, Prescott SA. Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons. J Physiol 2018;596:1681–97.
Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 1969;32:1025–43.
Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. PAIN 1996;64:493–502.
Brewer CL, Li J, O'Conor K, Serafin EK, Baccei ML. Neonatal injury evokes persistent deficits in dynorphin inhibitory circuits within the adult mouse superficial dorsal horn. J Neurosci 2020;40:3882–95.
Brewer CL, Styczynski LM, Serafin EK, Baccei ML. Postnatal maturation of spinal dynorphin circuits and their role in somatosensation. PAIN 2020;161:1906–24.
Browne TJ, Smith KM, Gradwell MA, Iredale JA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Spinoparabrachial projection neurons form distinct classes in the mouse dorsal horn. PAIN 2021;162:1977–94.
Cameron D, Polgár E, Gutierrez-Mecinas M, Gomez-Lima M, Watanabe M, Todd AJ. The organisation of spinoparabrachial neurons in the mouse. PAIN 2015;156:2061–71.
Choi S, Hachisuka J, Brett MA, Magee AR, Omori Y, Iqbal NU, Zhang D, DeLisle MM, Wolfson RL, Bai L, Santiago C, Gong S, Goulding M, Heintz N, Koerber HR, Ross SE, Ginty DD. Parallel ascending spinal pathways for affective touch and pain. Nature 2020;587:258–63.
Dahlhaus A, Ruscheweyh R, Sandkühler J. Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro. J Physiol 2005;566:355–68.
Daniele CA, MacDermott AB. Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. J Neurosci 2009;29:686–95.
Draxler P, Honsek SD, Forsthuber L, Hadschieff V, Sandkühler J. VGluT3⁺ primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. J Neurosci 2014;34:12015–28.
Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X, Ross S, Lowell BB, Wang Y, Goulding M, Ma Q. Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014;159:1417–32.
Fernandes EC, Pechincha C, Luz LL, Kokai E, Szucs P, Safronov BV. Primary afferent-driven presynaptic inhibition of C-fiber inputs to spinal lamina I neurons. Prog Neurobiol 2020;188:101786.
Ford NC, Baccei ML. Inward-rectifying K(+) (K(ir)2) leak conductance dampens the excitability of lamina I projection neurons in the neonatal rat. Neuroscience 2016;339:502–10.
Ford NC, Ren D, Baccei ML. NALCN channels enhance the intrinsic excitability of spinal projection neurons. PAIN 2018;159:1719–30.
Hachisuka J, Koerber HR, Ross SE. Selective-cold output through a distinct subset of lamina I spinoparabrachial neurons. PAIN 2020;161:185–94.
Hachisuka J, Omori Y, Chiang MC, Gold MS, Koerber HR, Ross SE. Wind-up in lamina I spinoparabrachial neurons: a role for reverberatory circuits. PAIN 2018;159:1484–93.
Hahn JF. Thermal-mechanical stimulus interactions in low-threshold C-fiber mechanoreceptors of cat. Exp Neurol 1971;33:607–17.
Honsek SD, Seal RP, Sandkühler J. Presynaptic inhibition of optogenetically identified VGluT3+ sensory fibres by opioids and baclofen. PAIN 2015;156:243–51.
Hu HJ, Alter BJ, Carrasquillo Y, Qiu CS, Gereau RWt. Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons. J Neurosci 2007;27:13181–91.
Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, RWt Gereau. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 2006;50:89–100.
Hu HJ, RWt Gereau. Metabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K⁺ channels primarily in excitatory neurons of the spinal dorsal horn. J Neurophysiol 2011;105:3010–21.
Hylden JL, Anton F, Nahin RL. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 1989;28:27–37.
Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jäger T, Sandkühler J. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science (New York, NY) 2006;312:1659–62.
Kambrun C, Roca-Lapirot O, Salio C, Landry M, Moqrich A, Le Feuvre Y. TAFA4 reverses mechanical allodynia through activation of GABAergic transmission and microglial process retraction. Cell Rep 2018;22:2886–97.
Larsson M, Broman J. Synaptic organization of VGLUT3 expressing low-threshold mechanosensitive C fiber terminals in the rodent spinal cord. eNeuro 2019;ENEURO.0007-19.2019.
Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014;8:21.
Li J, Baccei ML. Pacemaker neurons within newborn spinal pain circuits. J Neurosci 2011;31:9010–22.
Li J, Baccei ML. Developmental regulation of membrane excitability in rat spinal lamina I projection neurons. J Neurophysiol 2012;107:2604–14.
Li J, Baccei ML. Neonatal tissue damage promotes spike timing-dependent synaptic long-term potentiation in adult spinal projection neurons. J Neurosci 2016;36:5405–16.
Li J, Baccei ML. Neonatal injury alters sensory input and synaptic plasticity in GABAergic interneurons of the adult mouse dorsal horn. J Neurosci 2019;39:7815–25.
Li J, Baccei ML. Intrinsic burst-firing in lamina I spinoparabrachial neurons during adolescence. Neurosci Lett 2021;750:135794.
Li J, Blankenship ML, Baccei ML. Deficits in glycinergic inhibition within adult spinal nociceptive circuits after neonatal tissue damage. PAIN 2013;154:1129–39.
Li J, Blankenship ML, Baccei ML. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J Neurosci 2013;33:3352–62.
Li J, Kritzer E, Craig PE, Baccei ML. Aberrant synaptic integration in adult lamina I projection neurons following neonatal tissue damage. J Neurosci 2015;35:2438–51.
Li J, Kritzer E, Ford NC, Arbabi S, Baccei ML. Connectivity of pacemaker neurons in the neonatal rat superficial dorsal horn. J Comp Neurol 2015;523:1038–53.
Li J, Serafin E, Baccei ML. Prostaglandin signaling governs spike timing-dependent plasticity at sensory synapses onto mouse spinal projection neurons. J Neurosci 2018;38:6628–39.
Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011;147:1615–27.
Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ. Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 2007;10:946–8.
Löken LS, Wessberg J, Morrison I, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 2009;12:547–8.
Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013;123:4050–62.
Lu Y, Doroshenko M, Lauzadis J, Kanjiya MP, Rebecchi MJ, Kaczocha M, Puopolo M. Presynaptic inhibition of primary nociceptive signals to dorsal horn lamina I neurons by dopamine. J Neurosci 2018;38:8809–21.
McMahon SB, Wall PD. Electrophysiological mapping of brainstem projections of spinal cord lamina I cells in the rat. Brain Res 1985;333:19–26.
Oliva AA Jr., Jiang M, Lam T, Smith KL, Swann JW. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 2000;20:3354–68.
Petitjean H, Bourojeni FB, Tsao D, Davidova A, Sotocinal SG, Mogil JS, Kania A, Sharif-Naeini R. Recruitment of spinoparabrachial neurons by dorsal horn calretinin neurons. Cell Rep 2019;28:1429–38.e1424.
Prescott SA, De Koninck Y. Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002;539:817–36.
Prescott SA, De Koninck Y. Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 2005;25:4743–54.
Ruscheweyh R, Ikeda H, Heinke B, Sandkühler J. Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol 2004;555:527–43.
Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 2009;462:651–5.
Serafin EK, Paranjpe A, Brewer CL, Baccei ML. Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision. PAIN 2021;162:203–18.
Shea VK, Perl ER. Sensory receptors with unmyelinated (C) fibers innervating the skin of the rabbit's ear. J Neurophysiol 1985;54:491–501.
Spike RC, Puskár Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003;18:2433–48.
Szucs P, Luz LL, Lima D, Safronov BV. Local axon collaterals of lamina I projection neurons in the spinal cord of young rats. J Comp Neurol 2010;518:2645–65.
Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006;26:1833–43.
Vallbo AB, Olausson H, Wessberg J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 1999;81:2753–63.
Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ. Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 2013;493:669–73.
Wercberger R, Braz JM, Weinrich JA, Basbaum AI. Pain and itch processing by subpopulations of molecularly diverse spinal and trigeminal projection neurons. Proc Natl Acad Sci United States America 2021;118:pnas.2105732118.
معلومات مُعتمدة: R01 NS072202 United States NS NINDS NIH HHS; R01 NS080889 United States NS NINDS NIH HHS
تواريخ الأحداث: Date Created: 20220923 Date Completed: 20230322 Latest Revision: 20240402
رمز التحديث: 20240402
مُعرف محوري في PubMed: PMC10033328
DOI: 10.1097/j.pain.0000000000002787
PMID: 36149785
قاعدة البيانات: MEDLINE
الوصف
تدمد:1872-6623
DOI:10.1097/j.pain.0000000000002787