دورية أكاديمية

SARS-CoV-2 infects adipose tissue in a fat depot- and viral lineage-dependent manner.

التفاصيل البيبلوغرافية
العنوان: SARS-CoV-2 infects adipose tissue in a fat depot- and viral lineage-dependent manner.
المؤلفون: Saccon TD; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Mousovich-Neto F; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Ludwig RG; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Carregari VC; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Dos Anjos Souza AB; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Dos Passos ASC; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil., Martini MC; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Barbosa PP; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., de Souza GF; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Muraro SP; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Forato J; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Amorim MR; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Marques RE; Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil., Veras FP; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil.; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil., Barreto E; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil., Gonçalves TT; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil.; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil., Paiva IM; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil., Fazolini NPB; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Onodera CMK; Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil., Martins Junior RB; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., de Araújo PHC; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Batah SS; Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Viana RMM; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., de Melo DM; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Fabro AT; Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Arruda E; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil., Queiroz Cunha F; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil., Cunha TM; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil., Pretti MAM; Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil., Smith BJ; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Marques-Souza H; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Knittel TL; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Ruiz GP; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Profeta GS; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil., Fontes-Cal TCM; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil., Boroni M; Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil., Vinolo MAR; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil., Farias AS; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil., Moraes-Vieira PMM; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil., Bizzacchi JMA; Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil., Teesalu T; Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia., Chaim FDM; Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil., Cazzo E; Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil., Chaim EA; Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil., Proença-Módena JL; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil., Martins-de-Souza D; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil. dmsouza@unicamp.br.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil. dmsouza@unicamp.br.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. dmsouza@unicamp.br.; D'Or Institute for Research and Education (IDOR), São Paulo, SP, Brazil. dmsouza@unicamp.br.; Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, SP, Brazil. dmsouza@unicamp.br., Osako MK; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. mko@fmrp.usp.br., Leiria LO; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. luizleiria@usp.br.; Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil. luizleiria@usp.br., Mori MA; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil. morima@unicamp.br.; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil. morima@unicamp.br.; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. morima@unicamp.br.; Instituto Nacional de Obesidade e Diabetes, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Campinas, SP, Brazil. morima@unicamp.br.
المصدر: Nature communications [Nat Commun] 2022 Sep 29; Vol. 13 (1), pp. 5722. Date of Electronic Publication: 2022 Sep 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: COVID-19* , SARS-CoV-2*, Adipose Tissue ; Angiotensin-Converting Enzyme 2 ; Cytokines ; Humans
مستخلص: Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.
(© 2022. The Author(s).)
References: Zhu, N. et al. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med. 382, 727–733 (2020). (PMID: 31978945709280310.1056/NEJMoa2001017)
Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021). (PMID: 34075212816783410.1038/s41579-021-00573-0)
Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).
Stefan, N., Birkenfeld, A. L. & Schulze, M. B. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 17, 135–149 (2021). (PMID: 3347953810.1038/s41574-020-00462-1)
Dias, S. S. G. et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 16, e1009127 (2020). (PMID: 33326472777332310.1371/journal.ppat.1009127)
Ryan, P. M. & Caplice, N. M. Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease 2019? Obesity 28, 1191–1194 (2020).
Kruglikov, I. L. & Scherer, P. E. The role of adipocytes and adipocyte-like cells in the severity of COVID-19 infections. Obesity 28, 1187–1190 (2020).
Martínez-Colón, G. J. et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci. Transl. Med. eabm9151, https://doi.org/10.1126/scitranslmed.abm9151 (2022).
Reiterer, M. et al. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 33, 2174–2188 e2175 (2021). (PMID: 34599884844333510.1016/j.cmet.2021.09.009)
Zickler, M. et al. Replication of SARS-CoV-2 in adipose tissue determines organ and systemic lipid metabolism in hamsters and humans. Cell Metab. 34, 1–2 (2022). (PMID: 3489550010.1016/j.cmet.2021.12.002)
Colleluori, G. et al. Visceral fat inflammation and fat embolism are associated with lung’s lipidic hyaline membranes in subjects with COVID-19. Int. J. Obes. 46, 1009–1017 (2022). (PMID: 10.1038/s41366-022-01071-w)
Basolo, A. et al. Adipose tissue in COVID-19: detection of SARS-CoV-2 in adipocytes and activation of the interferon-alpha response. J. Endocrinol. Invest. 45, 1021–1029 (2022). (PMID: 35169984885291610.1007/s40618-022-01742-5)
Schorr, M. et al. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex. Differ. 9, 28 (2018). (PMID: 29950175602232810.1186/s13293-018-0189-3)
Peckham, H. et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11, 6317 (2020). (PMID: 33298944772656310.1038/s41467-020-19741-6)
Favre, G. et al. Visceral fat is associated to the severity of COVID-19. Metab. Clin. Exp. 115, 154440 (2021). (PMID: 3324600910.1016/j.metabol.2020.154440)
Petersen, A. et al. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metab. Clin. Exp. 110, 154317 (2020). (PMID: 3267365110.1016/j.metabol.2020.154317)
Watanabe, M. et al. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19. Metab. Clin. Exp. 111, 154319 (2020). (PMID: 3271222210.1016/j.metabol.2020.154319)
Yang, Y. et al. Visceral adiposity and high intramuscular fat deposition independently predict critical illness in patients with SARS-CoV-2. Obesity 28, 2040–2048 (2020).
Stefan, N., Schick, F. & Haring, H. U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 26, 292–300 (2017). (PMID: 2876817010.1016/j.cmet.2017.07.008)
Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008). (PMID: 18460332320487010.1016/j.cmet.2008.04.004)
Yao, X. H. et al. A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Res. 31, 836–846 (2021). (PMID: 34135479820838010.1038/s41422-021-00523-8)
Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).
Raajendiran, A. et al. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 27, 1528–1540 e1527 (2019). (PMID: 3104247810.1016/j.celrep.2019.04.010)
Nahmgoong, H. et al. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab. 34, 458-472.e6 (2022).
Macotela, Y. et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61, 1691–1699 (2012). (PMID: 22596050337966510.2337/db11-1753)
Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013). (PMID: 23583168394278310.1016/j.cmet.2013.03.008)
Kroon, T. et al. PPARgamma and PPARalpha synergize to induce robust browning of white fat in vivo. Mol. Metab. 36, 100964 (2020). (PMID: 32248079713209710.1016/j.molmet.2020.02.007)
Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020). (PMID: 3311630510.1038/s41586-020-2856-x)
Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).
Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865 (2020).
Bolsoni-Lopes, A. & Alonso-Vale, M. I. Lipolysis and lipases in white adipose tissue - An update. Arch. Endocrinol. Metab. 59, 335–342 (2015). (PMID: 2633132110.1590/2359-3997000000067)
Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015). (PMID: 25815992440028710.1016/j.cell.2015.02.022)
Drucker, D. J. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab. 33, 479–498 (2021). (PMID: 33529600782598210.1016/j.cmet.2021.01.016)
Zhu, L. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31, 1068–1077 e1063 (2020). (PMID: 32369736725216810.1016/j.cmet.2020.04.021)
Fadini, G. P. et al. Newly-diagnosed diabetes and admission hyperglycemia predict COVID-19 severity by aggravating respiratory deterioration. Diabetes Res. Clin. Pract. 168, 108374 (2020). (PMID: 32805345742842510.1016/j.diabres.2020.108374)
Li, H. et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes. Metab. 22, 1897–1906 (2020). (PMID: 32469464728371010.1111/dom.14099)
Metwally, A. A., Mehta, P., Johnson, B. S., Nagarjuna, A. & Snyder, M. P. COVID-19-induced new-onset diabetes: trends and technologies. Diabetes 70, 2733–2744 (2021). (PMID: 34686519866098810.2337/dbi21-0029)
Item, F. & Konrad, D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes. Rev. 13, 30–39 (2012). (PMID: 2310725710.1111/j.1467-789X.2012.01035.x)
Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013). (PMID: 23747244426459110.1016/j.cmet.2013.05.008)
Codo, A. C. et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab. 32, 437–446 e435 (2020). (PMID: 32697943736703210.1016/j.cmet.2020.07.007)
Perez-Torres, I. et al. Alteration in the lipid profile and the desaturases activity in patients with severe pneumonia by SARS-CoV-2. Front. Physiol. 12, 667024 (2021). (PMID: 34045976814463210.3389/fphys.2021.667024)
Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72 e15 (2020). (PMID: 32492406725400110.1016/j.cell.2020.05.032)
Thomas, T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 5, e140327 (2020).
Badgett, M. R., Auer, A., Carmichael, L. E., Parrish, C. R. & Bull, J. J. Evolutionary dynamics of viral attenuation. J. Virol. 76, 10524–10529 (2002). (PMID: 1223933113658110.1128/JVI.76.20.10524-10529.2002)
Ayari, A. et al. Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun. Biol. 3, 237 (2020). (PMID: 32409640722420810.1038/s42003-020-0965-6)
Ponterio, E. et al. Adenovirus 36 DNA in human adipose tissue. Int. J. Obes. 39, 1761–1764 (2015). (PMID: 10.1038/ijo.2015.163)
Damouche, A. et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 11, e1005153 (2015). (PMID: 26402858458162810.1371/journal.ppat.1005153)
Huttunen, R. & Syrjanen, J. Obesity and the risk and outcome of infection. Int. J. Obes. 37, 333–340 (2013). (PMID: 10.1038/ijo.2012.62)
Hulme, K. D., Noye, E. C., Short, K. R. & Labzin, L. I. Dysregulated inflammation during obesity: driving disease severity in influenza virus and SARS-CoV-2 infections. Front. Immunol. 12, 770066 (2021). (PMID: 34777390858145110.3389/fimmu.2021.770066)
Weustink, A. C. et al. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology 250, 897–904 (2009). (PMID: 1924405310.1148/radiol.2503080421)
Batah, S. S. et al. COVID-19 bimodal clinical and pathological phenotypes. Clin. Transl. Med. 12, e648 (2022). (PMID: 35075808878702110.1002/ctm2.648)
Souza, W. M. et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe 2, e527–e535 (2021). (PMID: 34258603826627210.1016/S2666-5247(21)00129-4)
Dorner, B. G., Steinbach, S., Huser, M. B., Kroczek, R. A. & Scheffold, A. Single-cell analysis of the murine chemokines MIP-1alpha, MIP-1beta, RANTES and ATAC/lymphotactin by flow cytometry. J. Immunol. Methods 274, 83–91 (2003). (PMID: 1260953510.1016/S0022-1759(02)00498-2)
Jarvis, A. et al. Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem. 53, 2215–2226 (2010). (PMID: 20151671284144210.1021/jm901755g)
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).
Distler, U., Kuharev, J., Navarro, P. & Tenzer, S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 11, 795–812 (2016). (PMID: 2701075710.1038/nprot.2016.042)
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). (PMID: 1459765840376910.1101/gr.1239303)
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 1059217310240910.1093/nar/28.1.27)
Wu, G., Feng, X. & Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11, R53 (2010). (PMID: 20482850289806410.1186/gb-2010-11-5-r53)
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). (PMID: 30944313644762210.1038/s41467-019-09234-6)
المشرفين على المادة: 0 (Cytokines)
EC 3.4.17.23 (Angiotensin-Converting Enzyme 2)
SCR Organism: SARS-CoV-2 variants
تواريخ الأحداث: Date Created: 20220929 Date Completed: 20221003 Latest Revision: 20221128
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9521555
DOI: 10.1038/s41467-022-33218-8
PMID: 36175400
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-33218-8