دورية أكاديمية

Behavioural adjustments of predators and prey to wind speed in the boreal forest.

التفاصيل البيبلوغرافية
العنوان: Behavioural adjustments of predators and prey to wind speed in the boreal forest.
المؤلفون: Studd EK; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. ekstudd@gmail.com., Peers MJL; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada., Menzies AK; Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada., Derbyshire R; Department of Biology, Trent University, Peterborough, ON, Canada., Majchrzak YN; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada., Seguin JL; Department of Biology, Trent University, Peterborough, ON, Canada.; Wildlife Conservation Society Canada, Northern Boreal Program, Thunder Bay, ON, Canada., Murray DL; Department of Biology, Trent University, Peterborough, ON, Canada., Dantzer B; Department of Psychology, University of Michigan, Ann Arbor, MI, USA.; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA., Lane JE; Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada., McAdam AG; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA., Humphries MM; Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada., Boutin S; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
المصدر: Oecologia [Oecologia] 2022 Dec; Vol. 200 (3-4), pp. 349-358. Date of Electronic Publication: 2022 Sep 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 0150372 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1939 (Electronic) Linking ISSN: 00298549 NLM ISO Abbreviation: Oecologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York, Springer.
مواضيع طبية MeSH: Hares*/physiology , Lynx*/physiology , Sciuridae*/physiology , Wind*, Animals ; Ecosystem ; Predatory Behavior/physiology ; Taiga
مستخلص: Wind speed can have multifaceted effects on organisms including altering thermoregulation, locomotion, and sensory reception. While forest cover can substantially reduce wind speed at ground level, it is not known if animals living in forests show any behavioural responses to changes in wind speed. Here, we explored how three boreal forest mammals, a predator and two prey, altered their behaviour in response to average daily wind speeds during winter. We collected accelerometer data to determine wind speed effects on activity patterns and kill rates of free-ranging red squirrels (n = 144), snowshoe hares (n = 101), and Canada lynx (n = 27) in Kluane, Yukon from 2015 to 2018. All 3 species responded to increasing wind speeds by changing the time they were active, but effects were strongest in hares, which reduced daily activity by 25%, and lynx, which increased daily activity by 25%. Lynx also increased the number of feeding events by 40% on windy days. These results highlight that wind speed is an important abiotic variable that can affect behaviour, even in forested environments.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aubier TG, Sherratt TN (2020) State-dependent decision-making by predators and its consequences for mimicry. Am Nat 196(5):E127–E144. (PMID: 3306458910.1086/710568)
Barton BT (2014) Reduced wind strengthens top-down control of an insect herbivore. Ecology 95(9):2375–2381. (PMID: 10.1890/13-2171.1)
Baum WM (2013) What counts as behavior? The molar multiscale view. The Behavior Analyst 36:283–293. (PMID: 28018040514744410.1007/BF03392315)
Blecha KA, Boone RB, Alldredge MW, Kevin Blecha CA (2018) Hunger mediates apex predator’s risk avoidance response in wildland-urban interface. J Anim Ecol. https://doi.org/10.1111/1365-2656.12801. (PMID: 10.1111/1365-2656.1280129380374)
Bowyer R, McCullough D, Belovsky G (2001) Causes and consequences of sociality in mule deer. Alces 37(2):371–402.
Boyles JG, Bakken GS (2007) Seasonal changes and wind dependence of thermal conductance in dorsal fur from two small mammal species (Peromyscus leucopus and Microtus pennsylvanicus). J Therm Biol 32(7–8):383–387. (PMID: 10.1016/j.jtherbio.2007.04.007)
Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209. (PMID: 10.1016/S0065-3454(05)35004-2)
Burian A, Nielsen JM, Winder M (2020) Food quantity–quality interactions and their impact on consumer behavior and trophic transfer. Ecol Monogr 90(1):e01395. (PMID: 10.1002/ecm.1395)
Cáceres CE, Soluk DA (2002) Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131:402–408. (PMID: 2854771210.1007/s00442-002-0897-5)
Carr JM, Lima SL (2010) High wind speeds decrease the responsiveness of birds to potentially threatening moving stimuli. Anim Behav 80(2):215–220. (PMID: 10.1016/j.anbehav.2010.04.021)
Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric for Meteorol 63(3–4):219–237. (PMID: 10.1016/0168-1923(93)90061-L)
Cherry MJ, Barton BT (2017) Effects of wind on predator-prey interactions. Food Webs 13:92–97. (PMID: 10.1016/j.fooweb.2017.02.005)
Conover MR (2007) Predator-prey dynamics: the role of olfaction. CRC Press, Boca Raton. (PMID: 10.1201/9781420009125)
Cunningham CX, Scoleri V, Johnson CN, Barmuta LA, Jones ME (2019) Temporal partitioning of activity: rising and falling top-predator abundance triggers community-wide shifts in diel activity. Ecography 42(12):2157–2168. (PMID: 10.1111/ecog.04485)
Cuyler C, Øritsland NA (2002) Effect of wind on svalbard reindeer fur insulation. Rangifer 22(1):93. (PMID: 10.7557/2.22.1.694)
Dantzer B, Boutin S, Humphries MM, McAdam AG (2012) Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behav Ecol Sociobiol 66(6):865–878. (PMID: 10.1007/s00265-012-1335-2)
Davies-Colley R, Payne G, van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24(2):111–121.
Divoky GJ, Brown E, Elliott KH (2021) Reduced seasonal sea ice and increased sea surface temperature change prey and foraging behaviour in an ice-obligate Arctic seabird, Mandt’s black guillemot (Cepphus grylle mandtii). Polar Biol 44(4):701–715. (PMID: 10.1007/s00300-021-02826-3)
Fairbanks B, Dobson FS (2007) Mechanisms of the group-size effect on vigilance in Columbian ground squirrels: dilution versus detection. Anim Behav 73(1):115–123. (PMID: 10.1016/j.anbehav.2006.07.002)
Fogarty DT, Elmore RD, Fuhlendorf SD, Loss SR (2018) Variation and drivers of airflow patterns associated with olfactory concealment and habitat selection. Ecology 99(2):289–299. (PMID: 2934111110.1002/ecy.2102)
Graf RP, Sinclair ARE (1987) Parental care and adult aggression toward juvenile snowshoe hares. Arctic 40(3):175–178. (PMID: 10.14430/arctic1763)
Guillemette CU, Fletcher QE, Boutin S, Hodges RM, McAdam AG, Humphries MM (2009) Lactating red squirrels experiencing high heat load occupy less insulated nests. Biol Let 5(2):166–168. (PMID: 10.1098/rsbl.2008.0592)
Hagemoen RIM, Reimers E (2002) Reindeer summer activity pattern in relation to weather and insect harassment. J Anim Ecol 71(5):883–892. (PMID: 10.1046/j.1365-2656.2002.00654.x)
Hayes AR, Huntly NJ (2005) Effects of wind on the behavior and call transmission of pikas (Ochotona princeps). J Mammal 86(5):974–981. (PMID: 10.1644/1545-1542(2005)86[974:EOWOTB]2.0.CO;2)
Hollén LI, Bell MBV, Wade HM, Rose R, Russell A, Niven F, Radford AN (2011) Ecological conditions influence sentinel decisions. Anim Behav 82(6):1435–1441. (PMID: 10.1016/j.anbehav.2011.09.028)
Holt RD, Butler MJ (2019) Modeling audible detection of prairie grouse booming informs survey design. J Wildl Manag 83(3):638–645. (PMID: 10.1002/jwmg.21612)
Humphries MM, Boutin S, Thomas DW, Ryan JD, Selman C, McAdam AG, Speakman JR (2005) Expenditure freeze: the metabolic response of small mammals to cold environments. Ecol Lett 8(12):1326–1333. (PMID: 10.1111/j.1461-0248.2005.00839.x)
Jakosalem P, Collar NJ, Gill JA (2013) Habitat selection and conservation status of the endemic Ninox hawk-owl on Cebu, Philippines. Bird Cons Int 23:360–370. (PMID: 10.1017/S0959270912000317)
Kogure Y, Sato K, Watanuki Y, Wanless S, Daunt F (2016) European shags optimize their flight behavior according to wind conditions. J Exp Biol 219:311–318. (PMID: 2684755910.1242/jeb.131441)
Kolbe JA, Squires JR, Parker TW (2003) An effective box trap for capturing lynx. Wildl Soc Bull 31(4):980–985.
Leihy RI, Chown SL (2020) Wind plays a major but not exclusive role in the prevalence of insect flight loss on remote islands. Proc R Soc B Biol Sci 287(1940):20202121. https://doi.org/10.1098/rspb.2020.2121. (PMID: 10.1098/rspb.2020.2121)
Lensky NG, Lensky IM, Peretz A, Gertman I, Tanny J, Assouline S (2018) Diurnal course of evaporation from the dead sea in summer: a distinct double peak induced by solar radiation and night sea breeze. Water Resour Res 54:150–160. (PMID: 10.1002/2017WR021536)
Levitis DA, Lidicker WZ, Freund G (2009) Behavioural biologists do not agree on what constitutes behaviour. Anim Behav 78(1):103–110. (PMID: 20160973276092310.1016/j.anbehav.2009.03.018)
Luther D, Gentry K (2013) Sources of background noise and their influence on vertebrate acoustic communication. Behaviour 150:1045–1068. (PMID: 10.1163/1568539X-00003054)
McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol 416–417:182–205. (PMID: 10.1016/j.jhydrol.2011.10.024)
Menzies A, Studd E, Majchrzak Y, Peers M, Boutin S, Dantzer B, Humphries MM (2020) Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: homeostasis, allostasis, and ecological coexistence. Functl Ecol. https://doi.org/10.1111/1365-2435.13640. (PMID: 10.1111/1365-2435.13640)
Menzies AK, Studd EK, Seguin JL, Derbyshire RE, Murray DL, Boutin S, Boutin S (2022) Activity, heart rate, and energy expenditure of a cold-climate mesocarnivore, the Canada lynx (Lynx canadensis). Can J Zool 100:261–272. (PMID: 10.1139/cjz-2021-0142)
Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A (2018) Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol 87(4):956–973. (PMID: 2947969310.1111/1365-2656.12818)
Møller AP (2013) Long-term trends in wind speed, insect abundance and ecology of an insectivorous bird. Ecosphere 4(1):art6. (PMID: 10.1890/ES12-00310.1)
Moon K, Duff TJ, Tolhurst KG (2019) Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Saf J 105:320–329. (PMID: 10.1016/j.firesaf.2016.02.005)
Muñoz Sabater J (2019) ERA5-Land hourly data from 1981 to present. Copernicus climate change service (C3S) climate data store (CDS).
O’Donoghue M, Boutin S, Krebs CJ, Zuleta G, Murray DL, Hofer EJ (1998) Functional responses of coyotes and lynx to the snowshoe hare cycle. Ecology 79(4):1193–1208. (PMID: 10.1890/0012-9658(1998)079[1193:FROCAL]2.0.CO;2)
Ord TJ, Peters RA, Clucas B, Stamps JA (2007) Lizards speed up visual displays in noisy motion habitats. Proc R Soc B 274:1057–1062. (PMID: 17264059212447310.1098/rspb.2006.0263)
Pauls RW (1981) Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J Thermal Biol 6:79–86. (PMID: 10.1016/0306-4565(81)90057-7)
Peers MJL, Majchrzak YN, Menzies AK, Studd EK, Bastille-Rousseau G, Boonstra R, Boutin S (2020) Climate change increases predation risk for a keystone species of the boreal forest. Nat Clim Chang. https://doi.org/10.1038/s41558-020-00908-4. (PMID: 10.1038/s41558-020-00908-4)
Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM, Pieretti N (2011) Soundscape ecology: the science of sound in the landscape. Bioscience 61(3):203–216. (PMID: 10.1525/bio.2011.61.3.6)
Porter W (2016) Heat balances in ecological contexts. In: Johnson EA, Martin YE (eds) A Biogeoscience approach to ecosystems. Cambridge University Press, Cambridge, pp 49–87. (PMID: 10.1017/CBO9781107110632.005)
Quinn JL, Cresswell W (2004) Predator hunting behaviour and prey vulnerability. J Anim Ecol 73(1):143–154. (PMID: 10.1046/j.0021-8790.2004.00787.x)
Říha M, Gjelland KØ, Děd V, Eloranta AP, Rabaneda-Bueno R, Baktoft H, Peterka J (2021) Contrasting structural complexity differentiate hunting strategy in an ambush apex predator. Sci Rep 11(1):17472. (PMID: 34471177841076410.1038/s41598-021-96908-1)
Ruzicka RE, Conover MR (2011) Influence of wind and humidity on foraging behavior of olfactory mesopredators. Can Field-Nat 125(2):132. (PMID: 10.22621/cfn.v125i2.1196)
Shiratsuru S, Majchrzak YN, Peers MJL, Studd EK, Menzies AK, Derbyshire R, Boutin S (2021) Food availability and long-term predation risk interactively affect antipredator response. Ecology. https://doi.org/10.1002/ecy.3456. (PMID: 10.1002/ecy.345634165786)
Shuter BJ, Finstad AG, Helland IP, Zweimü I, Hölker F (2012) The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquat Sci 74:637–657. (PMID: 10.1007/s00027-012-0274-3)
Stander P, Albon S (1993) Hunting success of lions in a semi-arid environment. Symp Zool Soc Lond 65:127–143.
Studd EK, Boudreau MR, Majchrzak YN, Menzies AK, Peers MJL, Seguin JL, Humphries MM (2019a) Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free-ranging snowshoe hares. Front Ecol Evol 7:154. (PMID: 10.3389/fevo.2019.00154)
Studd EK, Landry-Cuerrier M, Menzies AK, Boutin S, McAdam AG, Lane JE, Humphries MM (2019b) Behavioral classification of low-frequency acceleration and temperature data from a free-ranging small mammal. Ecol Evol 9:619–630. (PMID: 3068014210.1002/ece3.4786)
Studd EK, Menzies AK, Siracusa ER, Dantzer B, Lane JE, McAdam AG, Humphries MM (2020) Optimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years. Ecol Lett 23:841–850. (PMID: 3218946910.1111/ele.13494)
Studd EK, Derbyshire RE, Menzies AK, Simms JF, Humphries MM, Murray DL, Boutin S (2021) The Purr-fect Catch: using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.13605. (PMID: 10.1111/2041-210X.13605)
Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65(1):13–21. (PMID: 10.1007/s00265-010-1037-6)
Togunov RR, Derocher AE, Lunn NJ (2017) Windscapes and olfactory foraging in a large carnivore. Sci Rep 7(1):46332. (PMID: 28402340538935310.1038/srep46332)
Vautard R, Cattiaux J, Yiou P, Thépaut J-N, Ciais P (2010) Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11):756–761. (PMID: 10.1038/ngeo979)
Velilla E, Muñoz M, Quiroga N, Symes L, ter Hofstede HM, Page RA, Halfwerk W (2020) Gone with the wind: Is signal timing in a neotropical katydid an adaptive response to variation in wind-induced vibratory noise? Behav Ecol Sociobiol 74(5):59. (PMID: 10.1007/s00265-020-02842-z)
Weimerskirch H, Guionnet T, Martin J, Sha¡er SA, Costa DP (2000) Fast and fuel ef cient? Optimal use of wind by flying albatrosses. Proc R Soc B 267:1869–1874. (PMID: 11052538169076110.1098/rspb.2000.1223)
Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335(6065):211–214. (PMID: 2224677410.1126/science.1210270)
Wood S (2017) generalized additive models: an introduction with R, 2nd edn. CRC Press, Chapman and Hall. (PMID: 10.1201/9781315370279)
Yip DA, Bayne EM, Campbell J, Proppe D (2017) Sound attenuation in forest and roadside environments: implications for avian point-count surveys. Condor 119:73–84. https://doi.org/10.1650/CONDOR-16-93.1. (PMID: 10.1650/CONDOR-16-93.1)
Zerba E, Dana AN, Lucia MA (1999) The influence of wind and locomotor activity on surface temperature and energy expenditure of the Eastern House Finch (Carpodacus mexicanus) during cold stress. Physiol Biochem Zool 72(3):265–276. (PMID: 1022232110.1086/316665)
فهرسة مساهمة: Keywords: Behavioural responses; Environmental variation; Predator detection; Predator–prey; Terrestrial; Thermoregulation
تواريخ الأحداث: Date Created: 20220929 Date Completed: 20221123 Latest Revision: 20221210
رمز التحديث: 20240829
DOI: 10.1007/s00442-022-05266-w
PMID: 36175692
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1939
DOI:10.1007/s00442-022-05266-w