دورية أكاديمية

Miro1 regulates mitochondrial homeostasis and meiotic resumption of mouse oocyte.

التفاصيل البيبلوغرافية
العنوان: Miro1 regulates mitochondrial homeostasis and meiotic resumption of mouse oocyte.
المؤلفون: Xue Y; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China.; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Meng TG; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Ouyang YC; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Liu SL; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Guo JN; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Wang ZB; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China., Schatten H; Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA., Song CY; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China., Guo XP; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China., Sun QY; Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
المصدر: Journal of cellular physiology [J Cell Physiol] 2022 Dec; Vol. 237 (12), pp. 4477-4486. Date of Electronic Publication: 2022 Oct 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Meiosis* , Mitochondria*/physiology , Oocytes*/physiology , rho GTP-Binding Proteins*/physiology, Animals ; Female ; Mice ; Pregnancy ; Homeostasis ; Oogenesis
مستخلص: Miro1, a mitochondrial Rho GTPase1, is a kind of mitochondrial outer membrane protein involved in the regulation of mitochondrial anterograde transport and its subcellular distribution. Mitochondria influence reproductive processes of mammals in some aspects. Mitochondria are important for oocyte maturation, fertilization and embryonic development. The purpose of this study was to evaluate whether Miro1 regulates mouse oocyte maturation by altering mitochondrial homeostasis. We showed that Miro1 was expressed in mouse oocyte at different maturation stages. Miro1 mainly distributed in the cytoplasm and around the spindle during oocyte maturation. Small interference RNA-mediated Miro1 depletion caused significantly abnormal distribution of mitochondria and endoplasmic reticulum as well as mitochondrial dysfunction, resulting in severely impaired germinal vesicle breakdown (GVBD) of mouse oocytes. For those oocytes which went through GVBD in the Miro1-depleted group, part of them were inhibited in meiotic prophase I stage with abnormal chromosome arrangement and scattered spindle length. Our results suggest that Miro1 is essential for maintaining the maturation potential of mouse oocyte.
(© 2022 Wiley Periodicals LLC.)
References: Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B., & Agrawal, A. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. The EMBO Journal, 33(9), 994-1010. https://doi.org/10.1002/embj.201386030.
Bhatti, J. S., Bhatti, G. K., & Reddy, P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1066-1077. https://doi.org/10.1016/j.bbadis.2016.11.010.
Bock, F. J. & Tait, S. W. G. (2020). Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology, 21(2), 85-100. https://doi.org/10.1038/s41580-019-0173-8.
Cecchino, G. N., Seli, E., Alves da Motta, E. L., & García-Velasco, J. A. (2018). The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive BioMedicine Online, 36(6), 686-697. https://doi.org/10.1016/j.rbmo.2018.02.007.
Desquiret-Dumas, V., Clément, A., Seegers, V., Boucret, L., Ferré-L'Hotellier, V., Bouet, P. E., Descamps, P., Procaccio, V., Reynier, P., & May-Panloup, P. (2017). The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Human Reproduction (Oxford, England), 32(3), 607-614. https://doi.org/10.1093/humrep/dew341.
Devine, M. J., Birsa, N., & Kittler, J. T. (2016). Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiology of Disease, 90, 27-34. https://doi.org/10.1016/j.nbd.2015.12.008.
Ding, L., Lei, Y., Han, Y., Li, Y., Ji, X., & Liu, L. (2016). Vimar is a novel regulator of mitochondrial fission through miro. PLoS Genetics, 12(10), e1006359. https://doi.org/10.1371/journal.pgen.1006359.
Eisner, V., Picard, M., & Hajnóczky, G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nature Cell Biology, 20(7), 755-765. https://doi.org/10.1038/s41556-018-0133-0.
Fransson, Å., Ruusala, A., & Aspenström, P. (2003). Atypical rho GTPases have roles in mitochondrial homeostasis and apoptosis. Journal of Biological Chemistry, 278(8), 6495-6502. https://doi.org/10.1074/jbc.M208609200.
Frederick, R. L., McCaffery, J. M., Cunningham, K. W., Okamoto, K., & Shaw, J. M. (2004). Yeast miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. Journal of Cell Biology, 167(1), 87-98. https://doi.org/10.1083/jcb.200405100.
Guillén-Samander, A., Leonzino, M., Hanna, M. G., Tang, N., Shen, H., & De Camilli, P. (2021). VPS13D bridges the ER to mitochondria and peroxisomes via miro. Journal of Cell Biology, 220(5), e202010004. https://doi.org/10.1083/jcb.202010004.
Hou, X., Zhu, S., Zhang, H., Li, C., Qiu, D., Ge, J., Guo, X., & Wang, Q. (2019). Mitofusin1 in oocyte is essential for female fertility. Redox Biology, 21, 101110. https://doi.org/10.1016/j.redox.2019.101110.
Hu, Y., Chen, H., Zhang, L., Lin, X., Li, X., Zhuang, H., Fan, H., Meng, T., He, Z., Huang, H., Gong, Q., Zhu, D., Xu, Y., He, P., Li, L., & Feng, D. (2021). The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy, 17(5), 1142-1156. https://doi.org/10.1080/15548627.2020.1749490.
Li, B., Zhang, Y., Li, H., Shen, H., Wang, Y., Li, X., Cui, G., & Chen, G. (2021). Miro1 regulates neuronal mitochondrial transport and distribution to alleviate neuronal damage in secondary brain injury after intracerebral hemorrhage in rats. Cellular and Molecular Neurobiology, 41(4), 795-812. https://doi.org/10.1007/s10571-020-00887-2.
López-Doménech, G., Howden, J. H., Covill-Cooke, C., Morfill, C., Patel, J. V., Bürli, R., Crowther, D., Birsa, N., Brandon, N. J., & Kittler, J. T. (2021). Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. The EMBO Journal, 40(14), e100715. https://doi.org/10.15252/embj.2018100715.
López-Doménech, G., Covill-Cooke, C., Ivankovic, D., Halff, E. F., Sheehan, D. F., Norkett, R., Birsa, N., & Kittler, J. T. (2018). Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. The EMBO Journal, 37(3), 321-336. https://doi.org/10.15252/embj.201696380.
Modi, S., López-Doménech, G., Halff, E. F., Covill-Cooke, C., Ivankovic, D., Melandri, D., Arancibia-Cárcamo, I. L., Burden, J. J., Lowe, A. R., & Kittler, J. T. (2019). Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nature Communications, 10(1), 4399. https://doi.org/10.1038/s41467-019-12382-4.
Niescier, R. F., Hong, K., Park, D., & Min, K. T. (2018). MCU interacts with Miro1 to modulate mitochondrial functions in neurons. The Journal of neuroscience, 38(20), 4666-4677. https://doi.org/10.1523/JNEUROSCI.0504-18.2018.
Pan, B. & Li, J. (2019). The art of oocyte meiotic arrest regulation. Reproductive biology and endocrinology: RB&E, 17(1), 8. https://doi.org/10.1186/s12958-018-0445-8.
Pan, Z. N., Pan, M. H., Sun, M. H., Li, X. H., Zhang, Y., & Sun, S. C. (2020). RAB7 GTPase regulates actin dynamics for DRP1-mediated mitochondria function and spindle migration in mouse oocyte meiosis. The FASEB Journal, 34(7), 9615-9627. https://doi.org/10.1096/fj.201903013R.
Qin, Y., Jiang, X., Yang, Q., Zhao, J., Zhou, Q., & Zhou, Y. (2021). The functions, methods, and mobility of mitochondrial transfer between cells. Frontiers in Oncology, 11, 672781. https://doi.org/10.3389/fonc.2021.672781.
Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., & Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Molecular Human Reproduction, 7(5), 425-429. https://doi.org/10.1093/molehr/7.5.425.
Roth, Z. (2018). Symposium review: Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. Journal of Dairy Science, 101(4), 3642-3654. https://doi.org/10.3168/jds.2017-13389.
Safiulina, D., Kuum, M., Choubey, V., Gogichaishvili, N., Liiv, J., Hickey, M. A., Cagalinec, M., Mandel, M., Zeb, A., Liiv, M., & Kaasik, A. (2019). Miro proteins prime mitochondria for parkin translocation and mitophagy. The EMBO Journal, 38(2), e99384. https://doi.org/10.15252/embj.201899384.
Saotome, M., Safiulina, D., Szabadkai, G., Das, S., Fransson, Å., Aspenstrom, P., Rizzuto, R., & Hajnóczky, G. (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the miro GTPase. Proceedings of the National Academy of Sciences, 105(52), 20728-20733. https://doi.org/10.1073/pnas.0808953105.
Saxton, W. M. & Hollenbeck, P. J. (2012). The axonal transport of mitochondria. Journal of cell science 125, (Pt 9), 2095-2104. https://doi.org/10.1242/jcs.053850.
Schwarz, T. L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harbor Perspectives in Biology, 5(6), a011304. https://doi.org/10.1101/cshperspect.a011304.
Sen, A. (2013). Oocyte maturation: A story of arrest and release. Frontiers in Bioscience, 5(2), 451-477. https://doi.org/10.2741/S383.
Shlevkov, E., Kramer, T., Schapansky, J., LaVoie, M. J., & Schwarz, T. L. (2016). Miro phosphorylation sites regulate parkin recruitment and mitochondrial motility. Proceedings of the National Academy of Sciences, 113(41), E6097-E6106. https://doi.org/10.1073/pnas.1612283113.
Sprenger, H. G. & Langer, T. (2019). The good and the bad of mitochondrial breakups. Trends in Cell Biology, 29(11), 888-900. https://doi.org/10.1016/j.tcb.2019.08.003.
Takahashi, Y., Hashimoto, S., Yamochi, T., Goto, H., Yamanaka, M., Amo, A., Matsumoto, H., Inoue, M., Ito, K., Nakaoka, Y., Suzuki, N., & Morimoto, Y. (2016). Dynamic changes in mitochondrial distribution in human oocytes during meiotic maturation. Journal Of Assisted Reproduction And Genetics, 33(7), 929-938. https://doi.org/10.1007/s10815-016-0716-2.
Udagawa, O. & Ishihara, N. (2020). Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes. The Journal of Biochemistry, 167(3), 257-266. https://doi.org/10.1093/jb/mvz093.
Udagawa, O., Ishihara, T., Maeda, M., Matsunaga, Y., Tsukamoto, S., Kawano, N., Miyado, K., Shitara, H., Yokota, S., Nomura, M., Mihara, K., Mizushima, N., & Ishihara, N. (2014). Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Current Biology, 24(20), 2451-2458. https://doi.org/10.1016/j.cub.2014.08.060.
Walch, L., Pellier, E., Leng, W., Lakisic, G., Gautreau, A., Contremoulins, V., Verbavatz, J. M., & Jackson, C. L. (2018). GBF1 and Arf1 interact with miro and regulate mitochondrial positioning within cells. Scientific Reports, 8(1), 17121. https://doi.org/10.1038/s41598-018-35190-0.
Wang, F., Li, A., Meng, T. G., Wang, L. Y., Wang, L. J., Hou, Y., Schatten, H., Sun, Q. Y., & Ou, X. H. (2020). Regulation of [Ca(2+)](i) oscillations and mitochondrial activity by various calcium transporters in mouse oocytes. Reproductive biology and endocrinology: RB&E, 18(1), 87. http://doi.org/10.1186/s12958-020-00643-7.
Yamaoka, S. & Leaver, C. J. (2008). EMB2473/MIRO1, an arabidopsis miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen. The Plant Cell, 20(3), 589-601. https://doi.org/10.1105/tpc.107.055756.
Yamaoka, S., Nakajima, M., Fujimoto, M., & Tsutsumi, N. (2011). MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis. Plant Cell Reports, 30(2), 239-244. http://doi.org/10.1007/s00299-010-0926-5.
Youle, R. J. & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062-1065. https://doi.org/10.1126/science.1219855.
Yu, Y., Dumollard, R., Rossbach, A., Lai, F. A., & Swann, K. (2010). Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. Journal of Cellular Physiology, 224(3), 672-680. https://doi.org/10.1002/jcp.22171.
Zhang, H., Lian, Y., Xie, N., & Zheng, Y. (2018). Ectopic expression of miro 1 ameliorates seizures and inhibits hippocampal neurodegeneration in a mouse model of pilocarpine epilepsy. Biochemistry and Cell Biology, 96(4), 468-474. https://doi.org/10.1139/bcb-2017-0102.
Zhang, H., Pan, Z., Ju, J., Xing, C., Li, X., Shan, M., & Sun, S. (2020). DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. Journal of Animal Science and Biotechnology, 11, 77. https://doi.org/10.1186/s40104-020-00489-4.
Zhang, J. H., Zhang, T., Gao, S. H., Wang, K., Yang, X. Y., Mo, F. F., Na Yu, Y. u, An, T., Li, Y. F., Hu, J. W., & Jiang, G. J. (2016). Mitofusin-2 is required for mouse oocyte meiotic maturation. Scientific Reports, 6, 30970. https://doi.org/10.1038/srep30970.
فهرسة مساهمة: Keywords: Miro1; Mitochondria; meiosis; oocyte
المشرفين على المادة: 0 (Miro-1 protein, mouse)
EC 3.6.5.2 (rho GTP-Binding Proteins)
تواريخ الأحداث: Date Created: 20221002 Date Completed: 20221220 Latest Revision: 20221222
رمز التحديث: 20221222
DOI: 10.1002/jcp.30890
PMID: 36183380
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.30890