دورية أكاديمية

Comprehensive Genomic Characterization of Marine Bacteria Thalassospira spp. Provides Insights into Their Ecological Roles in Aromatic Hydrocarbon-Exposed Environments.

التفاصيل البيبلوغرافية
العنوان: Comprehensive Genomic Characterization of Marine Bacteria Thalassospira spp. Provides Insights into Their Ecological Roles in Aromatic Hydrocarbon-Exposed Environments.
المؤلفون: Kayama G; Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan., Kanaly RA; Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan., Mori JF; Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan.
المصدر: Microbiology spectrum [Microbiol Spectr] 2022 Oct 26; Vol. 10 (5), pp. e0314922. Date of Electronic Publication: 2022 Oct 03.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: ASM Press Country of Publication: United States NLM ID: 101634614 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2165-0497 (Electronic) Linking ISSN: 21650497 NLM ISO Abbreviation: Microbiol Spectr Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : ASM Press, 2013-
مواضيع طبية MeSH: Polycyclic Aromatic Hydrocarbons*/metabolism , Phenanthrenes*/metabolism , Microbiota*, Bacteria/genetics ; Genomics ; Carbon/metabolism
مستخلص: The marine bacterial genus Thalassospira has often been identified as an abundant member of polycyclic aromatic hydrocarbon (PAH)-exposed microbial communities. However, despite their potential usability for biotechnological applications, functional genes that are conserved in their genomes have barely been investigated. Thus, the goal of this study was to comprehensively examine the functional genes that were potentially responsible for aromatic hydrocarbon biodegradation in the Thalassospira genomes available from databases, including a new isolate of Thalassospira , strain GO-4, isolated from a phenanthrene-enriched marine bacterial consortium. Strain GO-4 was used in this study as a model organism to link the genomic data and their metabolic functions. Strain GO-4 growth assays confirmed that it utilized a common phenanthrene biodegradation intermediate 2-carboxybenzaldehyde (CBA) as the sole source of carbon and energy, but did not utilize phenanthrene. Consistently, strain GO-4 was found to possess homologous genes of phdK , pht , and pca that encode enzymes for biodegradation of CBA, phthalic acid, and protocatechuic acid, respectively. Further comprehensive genomic analyses for 33 Thalassospira genomes from databases showed that a gene cluster that consisted of phdK and pht homologs was conserved in 13 of the 33 strains. pca gene homologs were found in all examined genomes; however, homologs of the known PAH-degrading genes, such as the pah , phn , or nah genes, were not found. Possibly Thalassospira spp. co-occupy niches with other PAH-degrading bacteria that provide them with PAH degradation intermediates and facilitated their inhabitation in PAH-exposed microbial ecosystems. IMPORTANCE Comprehensive investigation of multiple genomic data sets from targeted microbial taxa deposited in databases may provide substantial information to predict metabolic capabilities and ecological roles in different environments. This study is the first report that details the functional profiling of Thalassospira spp. that have repeatedly been found in polycyclic aromatic hydrocarbon (PAH)-exposed marine bacterial communities by using genomic data from a new isolate, Thalassospira strain GO-4, and other strains in databases. Through screening of functional genes potentially involved in aromatic hydrocarbon biodegradation across 33 Thalassospira genomes and growth assays for strain GO-4, it was suggested that Thalassospira spp. unexceptionally conserved the ability to metabolize single-ring, PAH biodegradation intermediates, while being incapable of utilizing PAHs. This expanded our understanding of this potentially important contributing member to PAH-degrading microbial ecosystems; such species are considered to be specialized in driving downstream reactions of PAH biodegradation.
References: J Biol Chem. 1968 May 25;243(10):2673-81. (PMID: 4967959)
Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1277-83. (PMID: 12148640)
Sci Total Environ. 2020 Aug 15;730:139013. (PMID: 32416503)
Appl Environ Microbiol. 1981 Oct;42(4):590-5. (PMID: 16345856)
Appl Microbiol Biotechnol. 2004 Jan;63(4):452-9. (PMID: 14716468)
Mikrobiologiia. 2011 Sep-Oct;80(5):691-9. (PMID: 22168013)
J Bacteriol. 1997 Oct;179(20):6488-94. (PMID: 9335300)
Appl Environ Microbiol. 2020 Dec 17;87(1):. (PMID: 33067200)
Biochem Biophys Res Commun. 2004 Sep 10;322(1):133-46. (PMID: 15313184)
ISME J. 2020 Sep;14(9):2347-2357. (PMID: 32514119)
Microbiol Resour Announc. 2022 Aug 18;11(8):e0053222. (PMID: 35867521)
Biodegradation. 2014 Jul;25(4):543-56. (PMID: 24356981)
Int J Syst Evol Microbiol. 2008 Mar;58(Pt 3):711-5. (PMID: 18319483)
Genome Biol. 2003;4(9):R57. (PMID: 12952536)
Nat Commun. 2018 Nov 30;9(1):5114. (PMID: 30504855)
J Gen Appl Microbiol. 2003 Feb;49(1):1-19. (PMID: 12682862)
J Bacteriol. 1999 Jan;181(2):531-40. (PMID: 9882667)
Int J Syst Evol Microbiol. 2011 Sep;61(Pt 9):2040-2044. (PMID: 20851912)
Environ Microbiol. 2019 Jul;21(7):2307-2319. (PMID: 30927379)
PLoS One. 2010 Jun 25;5(6):e11147. (PMID: 20593022)
Int J Syst Evol Microbiol. 2010 May;60(Pt 5):1125-1129. (PMID: 19666802)
Appl Microbiol Biotechnol. 2013 Jun;97(11):5125-35. (PMID: 22903320)
Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1149-1153. (PMID: 24408523)
Microbiology (Reading). 2019 Jun;165(6):625-637. (PMID: 30994434)
Int J Syst Bacteriol. 1995 Apr;45(2):226-34. (PMID: 7537056)
Sci Total Environ. 2015 Sep 1;526:312-28. (PMID: 25965373)
J Ind Microbiol Biotechnol. 1997 Nov-Dec;19(5-6):401-7. (PMID: 9451837)
Nat Rev Microbiol. 2006 Mar;4(3):173-82. (PMID: 16489346)
Biotechnol Appl Biochem. 2021 Dec;68(6):1202-1215. (PMID: 32969539)
Chemosphere. 2014 Dec;117:486-93. (PMID: 25240723)
Environ Microbiol Rep. 2020 Feb;12(1):3-15. (PMID: 31364812)
J Biol Chem. 1987 Feb 5;262(4):1510-8. (PMID: 3805038)
Appl Environ Microbiol. 2000 Nov;66(11):4662-72. (PMID: 11055908)
Microbiol Spectr. 2022 Feb 23;10(1):e0222521. (PMID: 34985328)
AMB Express. 2018 Apr 25;8(1):67. (PMID: 29696463)
Appl Microbiol Biotechnol. 1999 Dec;53(1):98-107. (PMID: 10645629)
Res Microbiol. 2003 Apr;154(3):199-206. (PMID: 12706509)
Res Microbiol. 2007 Mar;158(2):175-86. (PMID: 17258432)
J Hazard Mater. 2021 Feb 5;403:123825. (PMID: 33264917)
ISME J. 2017 Nov;11(11):2569-2583. (PMID: 28777379)
Environ Pollut. 2013 Jul;178:474-82. (PMID: 23570949)
J Hazard Mater. 2019 Feb 15;364:509-518. (PMID: 30388634)
Mar Pollut Bull. 2011 Aug;62(8):1683-92. (PMID: 21719036)
Environ Sci Technol. 2007 Aug 1;41(15):5426-32. (PMID: 17822112)
Appl Microbiol Biotechnol. 2001 May;55(5):609-18. (PMID: 11414329)
World J Microbiol Biotechnol. 2012 Mar;28(3):1321-5. (PMID: 22805854)
Microbiology (Reading). 2004 Nov;150(Pt 11):3749-3761. (PMID: 15528661)
Appl Environ Microbiol. 2019 Jan 23;85(3):. (PMID: 30478232)
فهرسة مساهمة: Keywords: aromatic hydrocarbons; biodegradation; genomics; marine bacteria
المشرفين على المادة: 0 (Polycyclic Aromatic Hydrocarbons)
448J8E5BST (phenanthrene)
0 (Phenanthrenes)
7440-44-0 (Carbon)
تواريخ الأحداث: Date Created: 20221003 Date Completed: 20221028 Latest Revision: 20230103
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9604089
DOI: 10.1128/spectrum.03149-22
PMID: 36190412
قاعدة البيانات: MEDLINE
الوصف
تدمد:2165-0497
DOI:10.1128/spectrum.03149-22