دورية أكاديمية

Cathelicidin as a marker for subclinical cardiac changes and microvascular complications in children and adolescents with type 1 diabetes.

التفاصيل البيبلوغرافية
العنوان: Cathelicidin as a marker for subclinical cardiac changes and microvascular complications in children and adolescents with type 1 diabetes.
المؤلفون: Matter RM; Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt., Nasef MWA; Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt., ShibaAlhamd RM; Egypt Ministry of Health and Population, Cairo, Egypt., Thabet RA; Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
المصدر: Journal of pediatric endocrinology & metabolism : JPEM [J Pediatr Endocrinol Metab] 2022 Oct 06; Vol. 35 (12), pp. 1509-1517. Date of Electronic Publication: 2022 Oct 06 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Walter de Gruyter Country of Publication: Germany NLM ID: 9508900 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 2191-0251 (Electronic) Linking ISSN: 0334018X NLM ISO Abbreviation: J Pediatr Endocrinol Metab Subsets: MEDLINE
أسماء مطبوعة: Publication: Mar. 2011- : Berlin : Walter de Gruyter
Original Publication: London : Freund Pub. House, [1995-
مواضيع طبية MeSH: Diabetes Mellitus, Type 1*/complications, Humans ; Adolescent ; Child ; Carotid Intima-Media Thickness ; Biomarkers ; Cholesterol ; Cathelicidins
مستخلص: Objectives: To detect cathelicidin levels in pediatric patients with type 1 diabetes (T1D) as a potential marker for diabetic vascular complications and to assess its relation to diastolic dysfunction as an index for subclinical macrovasculopathy.
Methods: Totally, 84 patients with T1D were categorized into three groups; newly diagnosed diabetes group (28 patients with a mean age of 12.38 ± 1.99) years, T1D without microvascular complications group (28 patients with a mean age of 13.04 ± 2.27), and T1D with microvascular complications group (28 patients with a mean age of 13.96 ± 2.30). Patients were evaluated using serum cathelicidin levels and echocardiography.
Results: Total cholesterol, microalbuminuria, and cathelicidin levels were significantly higher in patients with microvascular complications when compared to the other two groups (p<0.001). Additionally, carotid intima-media thickness (CIMT) echocardiography values and diastolic functions were significantly higher in patients with complications (p<0.001). Cathelicidin was positively correlated to the duration of diabetes (r=0.542, p<0.001), total cholesterol (r=0.346, p=0.001), recurrence of hypoglycemia (r=0.351, p=0.001), recurrence of diabetes ketoacidosis (r=0.365, p=0.001), CIMT (r=0.544, p<0.001), and E/A values (r=0.405, p<0.001).
Conclusions: Serum cathelicidin levels can be used as an early marker for the occurrence and progression of vascular complications in patients with T1D.
(© 2022 Walter de Gruyter GmbH, Berlin/Boston.)
References: Donaghue, KC, Marcovecchio, ML, Wadwa, RP, Chew, EY, Wong, TY, Calliari, LE, et al.. ISPAD clinical practice consensus guidelines 2018: microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes 2018;19(27 Suppl):262–74. https://doi.org/10.1111/pedi.12742.
Litwak, L, Goh, SY, Hussein, Z, Malek, R, Prusty, V, Khamseh, ME. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab Syndrome 2013;5:57. https://doi.org/10.1186/1758-5996-5-57.
Alicic, RZ, Rooney, MT, Tuttle, KR. Diabetic kidney disease. Clin J Am Soc Nephrol 2017;12:2032–45.https://doi.org/10.2215/CJN.11491116.
Rask-Madsen, C, King, GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 2013;17:20–33. https://doi.org/10.1016/j.cmet.2012.11.012.
Ozdemir, O, Koksoy, A, Bulus, A, Andiran, N, Yagli, E. The effects of type 1 diabetes mellitus on cardiac functions in children: evaluation by conventional and tissue Doppler echocardiography. J Pediatr Endocrinol Metab 2016;29:1389–95.https://doi.org/10.1515/jpem-2016-0222.
Hassan Ayman, KM, Mahmoud, AA, Abdel-Mageed, EA, Marwa, S, Soliman Mona, M, Kishk Yehia, T. Correlation between left ventricular diastolic dysfunction and dyslipidaemia in asymptomatic patients with new-onset type 2 diabetes mellitus. Egypt J Intern Med 2021;33:8.https://doi.org/10.1186/s43162-021-00037-0.
Cristelo, C, Machado, A, Sarmento, B, Gama, FM. The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility. Endocr Connect 2021;10:R1–12. https://doi.org/10.1530/EC-20-0484.
El-Ashmawy, HM, Ahmed, AM. Serum cathelicidin as a marker for diabetic nephropathy in patients with type 1 diabetes. Diabetes/Metab Res Rev 2018;34:e3057. https://doi.org/10.1002/dmrr.3057.
El-Nofely, AA. Anthropometry of Egyptians from birth till senility sociology research. Cairo: Centre-Cairo University Press; 2012. 53–85 pp.
Wilkinson, CP, Ferris, FL3rd, Klein, RE, Lee, PP, Agardh, CD, Davis, M, et al.., Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110:1677–82. https://doi.org/10.1016/s0161-6420(03)00475-5.
Weintrob, N, Amitay, I, Lilos, P, Shalitin, S, Lazar, L, Josefsberg, Z. Bedside neuropathy disability score compared to quantitative sensory testing for measurement of diabetic neuropathy in children, adolescents, and young adults with type 1 diabetes. J Diabetes Its Complications 2007;21:13–9. https://doi.org/10.1016/j.jdiacomp.2005.11.002.
England, JD, Gronseth, GS, Franklin, G, Miller, RG, Asbury, AK, Carter, GT, et al.. Distal symmetric polyneuropathy: a definition for clinical research: report of the American academy of neurology, the American association of electrodiagnostic medicine, and the American academy of physical medicine and rehabilitation. Neurology 2005;64:199–207. https://doi.org/10.1212/01.wnl.0000149522.32823.ea.
Lopez, L, Colan, SD, Frommelt, PC, Ensing, GJ, Kendall, K, Younoszai, AK, et al.. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American society of echocardiography pediatric and congenital heart disease council. J Am Soc Echocardiogr 2010;23:465–95. https://doi.org/10.1016/j.echo.2010.03.019.
Baroncini, LA, Sylvestre Lde, C, Pecoits Filho, R. Assessment of intima-media thickness in healthy children aged 1 to 15 years. Arq Bras Cardiol 2016;106:327–32. https://doi.org/10.5935/abc.20160030.
Breton, MD, Patek, SD, Lv, D, Schertz, E, Robic, J, Pinnata, J, et al.. Continuous glucose monitoring and insulin informed advisory system with automated titration and dosing of insulin reduces glucose variability in type 1 diabetes mellitus. Diabetes Technol Therapeut 2018;20:531–40. https://doi.org/10.1089/dia.2018.0079.
Runge, AS, Kennedy, L, Brown, AS, Dove, AE, Levine, BJ, Koontz, SP, et al.. Does time-in-range matter? Perspectives from people with diabetes on the success of current therapies and the drivers of improved outcomes. Clin Diabetes 2018;36:112–9. https://doi.org/10.2337/cd17-0094.
Al-Agha, AE, Alafif, M, Abd-Elhameed, IA. Glycemic control, complications, and associated autoimmune diseases in children and adolescents with type 1 diabetes in Jeddah, Saudi Arabia. Saudi Med J 2015;36:26. https://doi.org/10.15537/smj.2015.1.9829.
Uruska, A, Michalska, A, Ostrowska, J, Skonieczna, P, Lipski, D, Uruski, P, et al.. Is cathelicidin a novel marker of diabetic microangiopathy in patients with type 1 diabetes? Clin Biochem 2017;50:1110–4. https://doi.org/10.1016/j.clinbiochem.2017.09.023.
Virk, SA, Donaghue, KC, Cho, YH, Benitez-Aguirre, P, Hing, S, Pryke, A, et al.. Association between HbA1c variability and risk of microvascular complications in adolescents with type 1 diabetes. J Clin Endocrinol Metab 2016;101:3257–63. ‏https://doi.org/10.1210/jc.2015-3604.
Schauber, J, Rieger, D, Weiler, F, Wehkamp, J, Eck, M, Fellermann, K, et al.. Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 2006;18:615–21. https://doi.org/10.1097/00042737-200606000-00007.
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615–25. https://doi.org/10.2337/diabetes.54.6.1615.
Yazici, D, Yavuz, DG, Toprak, A, Deyneli, O, Akalin, S. Impaired diastolic function and elevated Nt-proBNP levels in type 1 diabetic patients without overt cardiovascular disease. Acta Diabetol 2013;50:155–61. https://doi.org/10.1007/s00592-010-0235-z.
Suran, D, Sinkovic, A, Naji, F. Tissue Doppler imaging is a sensitive echocardiographic technique to detect subclinical systolic and diastolic dysfunction of both ventricles in type 1 diabetes mellitus. BMC Cardiovasc Disord 2016;16:1–10. https://doi.org/10.1186/s12872-016-0242-2.
Jensen, MT, Sogaard, P, Andersen, HU, Bech, J, Hansen, TF, Biering, T, et al.. Prevalence of systolic and diastolic dysfunction in patients with type 1 diabetes without known heart disease: the Thousand & 1 Study. Diabetologia 2014;57:672–80. https://doi.org/10.1007/s00125-014-3164-5.
Redfield, MM, Jacobsen, SJ, Burnett, JC, Mahoney, DW, Bailey, KR, Rodeheffer, RJ, et al.. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194–202. https://doi.org/10.1001/jama.289.2.194.
Gul, K, Celebi, AS, Kacmaz, F, Ozcan, OC, Ustun, I, Berker, D, et al.. Tissue Doppler imaging must be performed to detect early left ventricular dysfunction in patients with type 1 diabetes mellitus. Eur J Echocardiogr 2009;10:841–6. https://doi.org/10.1093/ejechocard/jep086.
Konduracka, E, Gackowski, A, Rostoff, P, Galicka-Latala, D, Frasik, W, Piwowarska, W. Diabetes-specific cardiomyopathy in type 1 diabetes mellitus: no evidence for its occurrence in the era of intensive insulin therapy. Eur Heart J 2007;28:2465–71. https://doi.org/10.1093/eurheartj/ehm361.
Khattab, AA, Soliman, MA. Biventricular function and glycemic load in type 1 diabetic children: Doppler tissue-imaging study. Pediatr Cardiol 2015;36:423–31. https://doi.org/10.1007/s00246-014-1030-3.
Wu, Y, Zhang, Y, Zhang, J, Zhai, T, Hu, J, Luo, H, et al.. Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X7R/NLRP3 inflammasome. J Mol Cell Cardiol 2020;139:75–86. https://doi.org/10.1016/j.yjmcc.2019.12.011.
Benachour, H, Zaiou, M, Samara, A. Association of human cathelicidin (hCAP-18/LL-37) gene expression with cardiovascular disease risk factors. Nutr, Metab Cardiovasc Dis 2009;19:720–8. https://doi.org/10.1016/j.numecd.2009.01.001.
فهرسة مساهمة: Keywords: CIMT; T1D vascular complications; cathelicidin
المشرفين على المادة: 0 (Biomarkers)
97C5T2UQ7J (Cholesterol)
0 (Cathelicidins)
تواريخ الأحداث: Date Created: 20221005 Date Completed: 20221202 Latest Revision: 20221207
رمز التحديث: 20221213
DOI: 10.1515/jpem-2022-0421
PMID: 36196598
قاعدة البيانات: MEDLINE
الوصف
تدمد:2191-0251
DOI:10.1515/jpem-2022-0421