دورية أكاديمية

Mouse organoids as an in vitro tool to study the in vivo intestinal response to cytotoxicants.

التفاصيل البيبلوغرافية
العنوان: Mouse organoids as an in vitro tool to study the in vivo intestinal response to cytotoxicants.
المؤلفون: Jardi F; Preclinical Sciences & Translational Safety, Janssen Pharmaceutica NV, Beerse, Belgium. fjardi@its.jnj.com., Kelly C; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK., Teague C; GlaxoSmithKline, Non-Clinical Safety, Ware, UK., Fowler-Williams H; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK., Sevin DC; Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany., Rodrigues D; Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands., Jo H; Certara UK Limited, Simcyp Division, Sheffield, UK., Ferreira S; Certara UK Limited, Simcyp Division, Sheffield, UK., Herpers B; Crown Bioscience Netherlands, Leiden, The Netherlands., Van Heerden M; Preclinical Sciences & Translational Safety, Janssen Pharmaceutica NV, Beerse, Belgium., de Kok T; Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands., Pin C; Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK., Lynch A; GlaxoSmithKline, Non-Clinical Safety, Ware, UK., Duckworth CA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK., De Jonghe S; Preclinical Sciences & Translational Safety, Janssen Pharmaceutica NV, Beerse, Belgium., Lammens L; Preclinical Sciences & Translational Safety, Janssen Pharmaceutica NV, Beerse, Belgium., Pritchard DM; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
المصدر: Archives of toxicology [Arch Toxicol] 2023 Jan; Vol. 97 (1), pp. 235-254. Date of Electronic Publication: 2022 Oct 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417615 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0738 (Electronic) Linking ISSN: 03405761 NLM ISO Abbreviation: Arch Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Fluorouracil*/toxicity , Apoptosis*, Humans ; Animals ; Mice ; Caspase 3/metabolism ; Diarrhea/chemically induced ; Organoids ; Intestinal Mucosa
مستخلص: Cross-species comparison of drug responses at the organoid level could help to determine the human relevance of findings from animal studies. To this end, we first need to evaluate the in vitro to in vivo translatability of preclinical organoids. Here, we used 5-fluorouracil (5-FU) as an exemplar drug to test whether the in vivo gut response to this cytotoxicant was preserved in murine intestinal organoids. Mice treated with 5-FU at 20 or 50 mg/kg IV (low and high dose, respectively) displayed diarrhea at clinically relevant exposures. 5-FU also induced intestinal lesions, increased epithelial apoptosis, and decreased proliferation in a dose-dependent manner. To enable comparison between the in vitro and in vivo response, top nominal in vitro drug concentrations that caused significant cytotoxicity were chosen (dose range 1-1000 µM). The inferred intracellular concentration in organoids at 1000 µM was within the tissue exposure range related to intestinal toxicity in vivo. 5-FU at ≥ 100 µM decreased ATP levels and increased Caspase-3 activity in intestinal organoids. In keeping with the in vivo findings, 5-FU increased the percentage of Caspase-3-positive cells and reduced Ki67 staining. At the transcriptome level, there was an overlap in the activity of pathways related to 5-FU's mode of action, lipid and cholesterol metabolism and integrin signaling across in vivo gut and organoids. The predicted activity state of upstream regulators was generally well preserved between setups. Collectively, our results suggest that despite their inherent limitations, organoids represent an adequate tool to explore the intestinal response to cytotoxicants.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Afrin S, Giampieri F, Forbes-Hernandez TY, Gasparrini M, Amici A, Cianciosi D, Quiles JL, Battino M (2018) Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic Biol Med 126:41–54. https://doi.org/10.1016/j.freeradbiomed.2018.07.014. (PMID: 10.1016/j.freeradbiomed.2018.07.014)
Al-Dasooqi N, Bowen J, Bennett C, Finnie J, Keefe D, Gibson R (2017) Cell adhesion molecules are altered during irinotecan-induced mucositis: a qualitative histopathological study. Support Care Cancer 25(2):391–398. https://doi.org/10.1007/s00520-016-3413-x. (PMID: 10.1007/s00520-016-3413-x)
Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. https://doi.org/10.1038/nature06196. (PMID: 10.1038/nature06196)
Belair DG, Visconti RJ, Hong M, Marella M, Peters MF, Scott CW, Kolaja KL (2020) Human ileal organoid model recapitulates clinical incidence of diarrhea associated with small molecule drugs. Toxicol in Vitro 68:104928. https://doi.org/10.1016/j.tiv.2020.104928. (PMID: 10.1016/j.tiv.2020.104928)
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170. (PMID: 10.1093/bioinformatics/btu170)
Cassidy J, Twelves C, Van Cutsem E, Hoff P, Bajetta E, Boyer M, Bugat R, Burger U, Garin A, Graeven U, McKendric J, Maroun J, Marshall J, Osterwalder B, Perez-Manga G, Rosso R, Rougier P, Schilsky RL, Capecitabine Colorectal Cancer Study, G (2002) First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol 13(4):566–575. https://doi.org/10.1093/annonc/mdf089. (PMID: 10.1093/annonc/mdf089)
Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13(6):419–431. https://doi.org/10.1038/nrd4309. (PMID: 10.1038/nrd4309)
Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 27(3):328–339. https://doi.org/10.1016/j.clnu.2008.02.005. (PMID: 10.1016/j.clnu.2008.02.005)
De Angelis PM, Svendsrud DH, Kravik KL, Stokke T (2006) Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer 5:20. https://doi.org/10.1186/1476-4598-5-20. (PMID: 10.1186/1476-4598-5-20)
Ewart L, Fabre K, Chakilam A, Dragan Y, Duignan DB, Eswaraka J, Gan J, Guzzie-Peck P, Otieno M, Jeong CG, Keller DA, de Morais SM, Phillips JA, Proctor W, Sura R, Van Vleet T, Watson D, Will Y, Tagle D, Berridge B (2017) Navigating tissue chips from development to dissemination: a pharmaceutical industry perspective. Exp Biol Med (maywood) 242(16):1579–1585. https://doi.org/10.1177/1535370217715441. (PMID: 10.1177/1535370217715441)
Fabre K, Berridge B, Proctor WR, Ralston S, Will Y, Baran SW, Yoder G, Van Vleet TR (2020) Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip 20(6):1049–1057. https://doi.org/10.1039/c9lc01168d. (PMID: 10.1039/c9lc01168d)
Fisher C, Simeon S, Jamei M, Gardner I, Bois YF (2019) VIVD: Virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol in Vitro 58:42–50. https://doi.org/10.1016/j.tiv.2018.12.017. (PMID: 10.1016/j.tiv.2018.12.017)
Fuhrer T, Heer D, Begemann B, Zamboni N (2011) High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal Chem 83(18):7074–7080. https://doi.org/10.1021/ac201267k. (PMID: 10.1021/ac201267k)
Gao J, Gao J, Qian L, Wang X, Wu M, Zhang Y, Ye H, Zhu S, Yu Y, Han W (2014) Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol Ther 15(8):982–991. https://doi.org/10.4161/cbt.29114. (PMID: 10.4161/cbt.29114)
Harvey VJ, Slevin ML, Dilloway MR, Clark PI, Johnston A, Lant AF (1984) The influence of cimetidine on the pharmacokinetics of 5-fluorouracil. Br J Clin Pharmacol 18(3):421–430. https://doi.org/10.1111/j.1365-2125.1984.tb02484.x. (PMID: 10.1111/j.1365-2125.1984.tb02484.x)
Hedrich WD, Panzica-Kelly JM, Chen SJ, Strassle B, Hasson C, Lecureux L, Wang L, Chen W, Sherry T, Gan J, Davis M (2020) Development and characterization of rat duodenal organoids for ADME and toxicology applications. Toxicology 446:152614. https://doi.org/10.1016/j.tox.2020.152614. (PMID: 10.1016/j.tox.2020.152614)
Herpers B, Eppink B, James MI, Cortina C, Canellas-Socias A, Boj SF, Hernando-Momblona X, Glodzik D, Roovers RC, van de Wetering M, Bartelink-Clements C, Zondag-van der Zande V, Mateos JG, Yan K, Salinaro L, Basmeleh A, Fatrai S, Maussang D, Lammerts van Bueren JJ, Chicote I, Serna G, Cabellos L, Ramirez L, Nuciforo P, Salazar R, Santos C, Villanueva A, Stephan-Otto Attolini C, Sancho E, Palmer HG, Tabernero J, Stratton MR, de Kruif J, Logtenberg T, Clevers H, Price LS, Vries RGJ, Batlle E, Throsby M (2022) Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. Nat Cancer 3(4):418–436. https://doi.org/10.1038/s43018-022-00359-0. (PMID: 10.1038/s43018-022-00359-0)
Jones LG, Vaida A, Thompson LM, Ikuomola FI, Caamano JH, Burkitt MD, Miyajima F, Williams JM, Campbell BJ, Pritchard DM, Duckworth CA (2019) NF-kappaB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow-derived dendritic cells. Cell Death Dis 10(12):896. https://doi.org/10.1038/s41419-019-2129-5. (PMID: 10.1038/s41419-019-2129-5)
Keefe DM, Brealey J, Goland GJ, Cummins AG (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47(5):632–637. https://doi.org/10.1136/gut.47.5.632. (PMID: 10.1136/gut.47.5.632)
Kraiczy J, Nayak KM, Howell KJ, Ross A, Forbester J, Salvestrini C, Mustata R, Perkins S, Andersson-Rolf A, Leenen E, Liebert A, Vallier L, Rosenstiel PC, Stegle O, Dougan G, Heuschkel R, Koo BK, Zilbauer M (2019) DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68(1):49–61. https://doi.org/10.1136/gutjnl-2017-314817. (PMID: 10.1136/gutjnl-2017-314817)
Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703. (PMID: 10.1093/bioinformatics/btt703)
Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655. https://doi.org/10.1038/sj.onc.1203015. (PMID: 10.1038/sj.onc.1203015)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8)
Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S, Brendler-Schwaab S, Cirit M, David R, Dehne EM, Durieux I, Ewart L, Fitzpatrick SC, Frey O, Fuchs F, Griffith LG, Hamilton GA, Hartung T, Hoeng J, Hogberg H, Hughes DJ, Ingber DE, Iskandar A, Kanamori T, Kojima H, Kuehnl J, Leist M, Li B, Loskill P, Mendrick DL, Neumann T, Pallocca G, Rusyn I, Smirnova L, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tsyb S, Trapecar M, Van de Water B, Van den Eijnden-van Raaij J, Vulto P, Watanabe K, Wolf A, Zhou X, Roth A (2020) Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. Altex 37(3):365–394. https://doi.org/10.14573/altex.2001241. (PMID: 10.14573/altex.2001241)
Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, Volckmann R, Kung KS, Koster J, Radulescu S, Myant K, Versteeg R, Sansom OJ, van Es JH, Barker N, van Oudenaarden A, Mohammed S, Heck AJ, Clevers H (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent “+4” cell markers. EMBO J 31(14):3079–3091. https://doi.org/10.1038/emboj.2012.166. (PMID: 10.1038/emboj.2012.166)
Myant K, Sansom OJ (2011) Wnt/Myc interactions in intestinal cancer: partners in crime. Exp Cell Res 317(19):2725–2731. https://doi.org/10.1016/j.yexcr.2011.08.001. (PMID: 10.1016/j.yexcr.2011.08.001)
Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399. (PMID: 10.1006/rtph.2000.1399)
Peters MF, Choy AL, Pin C, Leishman DJ, Moisan A, Ewart L, Guzzie-Peck PJ, Sura R, Keller DA, Scott CW, Kolaja KL (2020) Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20(7):1177–1190. https://doi.org/10.1039/c9lc01107b. (PMID: 10.1039/c9lc01107b)
Potten CS, Owen G, Hewitt D, Chadwick CA, Hendry H, Lord BI, Woolford LB (1995) Stimulation and inhibition of proliferation in the small intestinal crypts of the mouse after in vivo administration of growth factors. Gut 36(6):864–873. https://doi.org/10.1136/gut.36.6.864. (PMID: 10.1136/gut.36.6.864)
Pranteda A, Piastra V, Stramucci L, Fratantonio D, Bossi G (2020) The p38 MAPK signaling activation in colorectal cancer upon therapeutic treatments. Int J Mol Sci. https://doi.org/10.3390/ijms21082773. (PMID: 10.3390/ijms21082773)
Pritchard DM, Potten CS, Hickman JA (1998) The relationships between p53-dependent apoptosis, inhibition of proliferation, and 5-fluorouracil-induced histopathology in murine intestinal epithelia. Cancer Res 58(23):5453–5465.
Pritchard DM, Watson AJ, Potten CS, Jackman AL, Hickman JA (1997) Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci USA 94(5):1795–1799. https://doi.org/10.1073/pnas.94.5.1795. (PMID: 10.1073/pnas.94.5.1795)
Rodrigues D, de Souza T, Coyle L, Di Piazza M, Herpers B, Ferreira S, Zhang M, Vappiani J, Sevin DC, Gabor A, Lynch A, Chung SW, Saez-Rodriguez J, Jennen DGJ, Kleinjans JCS, de Kok TM (2021) New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol 95(8):2691–2718. https://doi.org/10.1007/s00204-021-03092-2. (PMID: 10.1007/s00204-021-03092-2)
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935. (PMID: 10.1038/nature07935)
Sommer J, Mahli A, Freese K, Schiergens TS, Kuecuekoktay FS, Teufel A, Thasler WE, Muller M, Bosserhoff AK, Hellerbrand C (2017) Analysis of molecular mechanisms of 5-fluorouracil-induced steatosis and inflammation in vitro and in mice. Oncotarget 8(8):13059–13072. https://doi.org/10.18632/oncotarget.14371. (PMID: 10.18632/oncotarget.14371)
Spectrum pharmaceuticals. Fluorouracil {package insert}. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/012209s040lbl.pdf.
Stein A, Voigt W, Jordan K (2010) Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2(1):51–63. https://doi.org/10.1177/1758834009355164. (PMID: 10.1177/1758834009355164)
Sutherland JJ, Jolly RA, Goldstein KM, Stevens JL (2016) Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLoS Comput Biol 12(3):e1004847. https://doi.org/10.1371/journal.pcbi.1004847. (PMID: 10.1371/journal.pcbi.1004847)
Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49(3):197–202. https://doi.org/10.1080/03008200802143166. (PMID: 10.1080/03008200802143166)
Terret C, Erdociain E, Guimbaud R, Boisdron-Celle M, McLeod HL, Fety-Deporte R, Lafont T, Gamelin E, Bugat R, Canal P, Chatelut E (2000) Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin Pharmacol Ther 68(3):270–279. https://doi.org/10.1067/mcp.2000.109352. (PMID: 10.1067/mcp.2000.109352)
Thomas Steger-Hartmann M (2020) Translating in vitro to in vivo and animal to human. Curr Opin Toxicol 23–24:6–10. (PMID: 10.1016/j.cotox.2020.02.003)
van der Hee B, Madsen O, Vervoort J, Smidt H, Wells JM (2020) Congruence of transcription programs in adult stem cell-derived jejunum organoids and original tissue during long-term culture. Front Cell Dev Biol 8:375. https://doi.org/10.3389/fcell.2020.00375. (PMID: 10.3389/fcell.2020.00375)
van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963. https://doi.org/10.1038/nature03659. (PMID: 10.1038/nature03659)
Vappiani J, Eyster T, Orzechowski K, Ritz D, Patel P, Sevin D, Aon J (2021) Exometabolome profiling reveals activation of the carnitine buffering pathway in fed-batch cultures of CHO cells co-fed with glucose and lactic acid. Biotechnol Prog 37(6):e3198. https://doi.org/10.1002/btpr.3198. (PMID: 10.1002/btpr.3198)
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 40: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089. (PMID: 10.1093/nar/gkx1089)
Yui S, Azzolin L, Maimets M, Pedersen MT, Fordham RP, Hansen SL, Larsen HL, Guiu J, Alves MRP, Rundsten CF, Johansen JV, Li Y, Madsen CD, Nakamura T, Watanabe M, Nielsen OH, Schweiger PJ, Piccolo S, Jensen KB (2018) YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22(1):35–49. https://doi.org/10.1016/j.stem.2017.11.001. (PMID: 10.1016/j.stem.2017.11.001)
Yumoto T, Nakadate K, Nakamura Y, Sugitani Y, Sugitani-Yoshida R, Ueda S, Sakakibara S (2013) Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors. PLoS ONE 8(11):e79895. https://doi.org/10.1371/journal.pone.0079895. (PMID: 10.1371/journal.pone.0079895)
Zeng D, Wang Y, Chen Y, Li D, Li G, Xiao H, Hou J, Wang Z, Hu L, Wang L, Li J (2021) Angelica polysaccharide antagonizes 5-fu-induced oxidative stress injury to reduce apoptosis in the liver through Nrf2 pathway. Front Oncol 11:720620. https://doi.org/10.3389/fonc.2021.720620. (PMID: 10.3389/fonc.2021.720620)
Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13(8):1551–1569. https://doi.org/10.3390/molecules13081551. (PMID: 10.3390/molecules13081551)
Zu G, Guo J, Zhou T, Che N, Liu B, Wang D, Zhang X (2019) The transcription factor FoxM1 activates Nurr1 to promote intestinal regeneration after ischemia/reperfusion injury. Exp Mol Med 51(11):1–12. https://doi.org/10.1038/s12276-019-0343-y. (PMID: 10.1038/s12276-019-0343-y)
معلومات مُعتمدة: 116030 Innovative Medicines Initiative
فهرسة مساهمة: Keywords: Drug-induced intestinal toxicity; Organoids; PBPK; Preclinical species; Transcriptomics
المشرفين على المادة: EC 3.4.22.- (Caspase 3)
U3P01618RT (Fluorouracil)
تواريخ الأحداث: Date Created: 20221006 Date Completed: 20230109 Latest Revision: 20230118
رمز التحديث: 20230120
DOI: 10.1007/s00204-022-03374-3
PMID: 36203040
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0738
DOI:10.1007/s00204-022-03374-3