دورية أكاديمية

Temperature-dependent Small RNA Expression Depends on Wild Genetic Backgrounds of Caenorhabditis briggsae.

التفاصيل البيبلوغرافية
العنوان: Temperature-dependent Small RNA Expression Depends on Wild Genetic Backgrounds of Caenorhabditis briggsae.
المؤلفون: Fusca DD; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada., Sharma E; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G1M1, Canada., Weiss JG; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada., Claycomb JM; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G1M1, Canada., Cutter AD; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada.
المصدر: Molecular biology and evolution [Mol Biol Evol] 2022 Nov 03; Vol. 39 (11).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: United States NLM ID: 8501455 Publication Model: Print Cited Medium: Internet ISSN: 1537-1719 (Electronic) Linking ISSN: 07374038 NLM ISO Abbreviation: Mol Biol Evol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2003- : New York, NY : Oxford University Press
Original Publication: [Chicago, Ill.] : University of Chicago Press, [c1983-
مواضيع طبية MeSH: Caenorhabditis*/genetics , Caenorhabditis*/metabolism , Caenorhabditis elegans Proteins*/genetics, Animals ; Caenorhabditis elegans/genetics ; Temperature ; RNA, Small Interfering/genetics ; Genetic Background ; RNA-Dependent RNA Polymerase
مستخلص: Geographically distinct populations can adapt to the temperature conditions of their local environment, leading to temperature-dependent fitness differences between populations. Consistent with local adaptation, phylogeographically distinct Caenorhabditis briggsae nematodes show distinct fitness responses to temperature. The genetic mechanisms underlying local adaptation, however, remain unresolved. To investigate the potential role of small noncoding RNAs in genotype-specific responses to temperature, we quantified small RNA expression using high-throughput sequencing of C. briggsae nematodes from tropical and temperate strain genotypes reared under three temperature conditions (14 °C, 20 °C, and 30 C). Strains representing both tropical and temperate regions showed significantly lower expression of PIWI-interacting RNAs (piRNAs) at high temperatures, primarily mapping to a large ∼7 Mb long piRNA cluster on chromosome IV. We also documented decreased expression of 22G-RNAs antisense to protein-coding genes and other genomic features at high rearing temperatures for the thermally-intolerant temperate strain genotype, but not for the tropical strain genotype. Reduced 22G-RNA expression was widespread along chromosomes and among feature types, indicative of a genome-wide response. Targets of the EGO-1/CSR-1 22G-RNA pathway were most strongly impacted compared with other 22G-RNA pathways, implicating the CSR-1 Argonaute and its RNA-dependent RNA polymerase EGO-1 in the genotype-dependent modulation of C. briggsae 22G-RNAs under chronic thermal stress. Our work suggests that gene regulation via small RNAs may be an important contributor to the evolution of local adaptations.
(© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
References: Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3588-93. (PMID: 20133686)
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3582-7. (PMID: 20133583)
BMC Evol Biol. 2011 Nov 21;11:339. (PMID: 22103856)
Evol Dev. 2015 Nov-Dec;17(6):380-97. (PMID: 26492828)
PLoS Genet. 2016 Apr 27;12(4):e1005987. (PMID: 27120580)
J Exp Biol. 2013 Mar 1;216(Pt 5):850-8. (PMID: 23155083)
Dev Cell. 2013 Dec 23;27(6):664-71. (PMID: 24360783)
Bioinformatics. 2016 Sep 15;32(18):2847-9. (PMID: 27207943)
Genome Biol. 2014 Feb 03;15(2):R29. (PMID: 24485249)
Bioinformatics. 2013 Jan 1;29(1):15-21. (PMID: 23104886)
Genome Biol Evol. 2021 Sep 1;13(9):. (PMID: 34383891)
Nucleic Acids Res. 2018 Jan 4;46(D1):D869-D874. (PMID: 29069413)
Evolution. 2011 Jan;65(1):52-63. (PMID: 20731713)
Genetics. 2011 Nov;189(3):967-76. (PMID: 21890738)
Mol Ecol. 2019 Aug;28(16):3681-3697. (PMID: 31325381)
Cell. 2009 Oct 2;139(1):123-34. (PMID: 19804758)
Bioessays. 2015 Sep;37(9):983-95. (PMID: 26126900)
Worm. 2014 Mar 05;3:e28234. (PMID: 25340013)
PLoS Genet. 2008 Apr 25;4(4):e1000056. (PMID: 18437202)
Curr Biol. 2013 Mar 18;23(6):523-8. (PMID: 23453955)
BMC Biol. 2018 Sep 18;16(1):103. (PMID: 30227863)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
Mol Cell. 2009 Oct 23;36(2):231-44. (PMID: 19800275)
Nucleic Acids Res. 2020 Jan 10;48(1):290-303. (PMID: 31754714)
New Phytol. 2017 Jan;213(1):206-219. (PMID: 27277139)
Genome Res. 2015 May;25(5):667-78. (PMID: 25783854)
Nucleic Acids Res. 2015 Apr 20;43(7):e47. (PMID: 25605792)
Hum Mutat. 2016 Oct;37(10):1060-73. (PMID: 27397105)
Mol Biol Evol. 2019 Aug 09;:. (PMID: 31397871)
PLoS Genet. 2019 Feb 8;15(2):e1007905. (PMID: 30735500)
Methods Mol Biol. 2011;725:251-80. (PMID: 21528459)
Nature. 2012 Sep 20;489(7416):447-51. (PMID: 22810588)
Nat Commun. 2021 Jul 9;12(1):4212. (PMID: 34244496)
J Evol Biol. 2021 Jun;34(6):977-988. (PMID: 33124163)
Genome Res. 2013 Mar;23(3):497-508. (PMID: 23363624)
Cell. 2012 Jul 6;150(1):78-87. (PMID: 22738724)
Mol Ecol. 2019 Feb;28(3):584-599. (PMID: 30548575)
Dev Cell. 2019 Mar 25;48(6):793-810.e6. (PMID: 30713076)
Nature. 2020 May;581(7806):89-93. (PMID: 32376953)
Evolution. 2013 Apr;67(4):1081-90. (PMID: 23550757)
Nucleic Acids Res. 2015 Jan;43(1):208-24. (PMID: 25510497)
PLoS Genet. 2012;8(3):e1002578. (PMID: 22457636)
Genetics. 2018 Apr;208(4):1585-1599. (PMID: 29437826)
Nucleic Acids Res. 2021 Sep 7;49(15):8836-8865. (PMID: 34329465)
Curr Biol. 2008 Jun 24;18(12):861-7. (PMID: 18501605)
Cell. 2013 Dec 19;155(7):1532-44. (PMID: 24360276)
Bioinformatics. 2013 Nov 1;29(21):2790-1. (PMID: 23975764)
PLoS Genet. 2011 Jul;7(7):e1002174. (PMID: 21779179)
New Phytol. 2008;177(2):419-427. (PMID: 17995917)
BMC Evol Biol. 2013 Jan 12;13:10. (PMID: 23311925)
Brief Bioinform. 2018 Sep 28;19(5):776-792. (PMID: 28334202)
Mol Ecol. 2017 Jun;26(11):2864-2879. (PMID: 28220980)
Mol Ecol. 2018 Mar;27(6):1342-1356. (PMID: 29524276)
BMC Bioinformatics. 2011 Jan 26;12:35. (PMID: 21269502)
Mol Cell. 2014 Feb 6;53(3):380-92. (PMID: 24440504)
J Exp Biol. 2004 Jul;207(Pt 16):2735-43. (PMID: 15235002)
Genetics. 2006 Aug;173(4):2021-31. (PMID: 16783011)
G3 (Bethesda). 2019 Jul 9;9(7):2135-2151. (PMID: 31048400)
معلومات مُعتمدة: Canada CIHR
فهرسة مساهمة: Keywords: Caenorhabditis; gene regulation; local adaptation; small RNAs; temperature stress
المشرفين على المادة: 0 (Caenorhabditis elegans Proteins)
0 (RNA, Small Interfering)
0 (CSR-1 protein, C elegans)
EC 2.7.7.- (EGO-1 protein, C elegans)
EC 2.7.7.48 (RNA-Dependent RNA Polymerase)
تواريخ الأحداث: Date Created: 20221012 Date Completed: 20221109 Latest Revision: 20221220
رمز التحديث: 20221221
مُعرف محوري في PubMed: PMC9641977
DOI: 10.1093/molbev/msac218
PMID: 36223483
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-1719
DOI:10.1093/molbev/msac218