دورية أكاديمية

Lithium chloride stimulates bone formation in extraction socket repair in rats.

التفاصيل البيبلوغرافية
العنوان: Lithium chloride stimulates bone formation in extraction socket repair in rats.
المؤلفون: Duarte PM; Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil. PMendesDuarte@dental.ufl.edu.; Department of Periodontology, College of Dentistry, University of Florida, 1600 SW Archer Rd., Room D10-6, Gainesville, FL, 32610, USA. PMendesDuarte@dental.ufl.edu., Miranda TS; Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil.; Department of Periodontology, São Judas Tadeu University, São Paulo, SP, Brazil., Marins LM; Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil., da Silva JRB; Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Área de Imunologia, Campinas, SP, Brazil., de Souza Malta F; Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil., de Vasconcelos Gurgel BC; Department of Dentistry, Federal University of Rio Grande Do Norte, Natal, RN, Brazil., Napimoga MH; Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Área de Imunologia, Campinas, SP, Brazil.
المصدر: Oral and maxillofacial surgery [Oral Maxillofac Surg] 2024 Mar; Vol. 28 (1), pp. 169-177. Date of Electronic Publication: 2022 Oct 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101319632 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1865-1569 (Electronic) Linking ISSN: 18651550 NLM ISO Abbreviation: Oral Maxillofac Surg Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag
مواضيع طبية MeSH: Lithium Chloride*/pharmacology , Osteogenesis*, Rats ; Animals ; Rats, Wistar ; Glycogen Synthase Kinase 3 beta ; Osteocalcin ; Water
مستخلص: Purpose: Previous evidence shows that lithium chloride (LiCl), a suppressor of glycogen synthase kinase-3β (GSK-3β), may enhance bone formation in several medical and dental conditions. Thus, the purpose of the current study was to assess the effects of LiCl on extraction socket repair in rats.
Methods: Thirty rats were randomly assigned into a control group (administration of water; n = 15) or a LiCl group (administration of 150 mg/kg of LiCl; n = 15). LiCl and water were given every other day, starting at 7 days before the extraction of upper first molars until the end of each experiment period. Histological sections from five rats per group were obtained at 10, 20, and 30 days post-extractions. Histometrical analysis of newly formed bone (NB) and the levels of tartrate-resistant acid phosphatase (TRAP)-stained cells were evaluated at 10, 20, and 30 days post-extractions. Immunohistochemical staining for receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), bone sialoprotein (BSP), osteocalcin (OCN), and osteopontin (OPN) was assessed at 10 days post-extractions.
Results: The LiCl group had a greater proportion of NB than the control group at 20 days (P < 0.05). At 30 days, the rate of TRAP-stained cells was lower in the LiCl group than in the control group (P < 0.05). At 10 days, the LiCl group presented stronger staining for OPG, BSP, OPN, and OCN, when compared to the control group (P < 0.05).
Conclusion: Systemic LiCl enhanced extraction socket repair, stimulated an overall increase in bone formation markers, and restricted the levels of TRAP in rats.
(© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Felber W, Bauer M, Lewitzka U, Müller-Oerlinghausen B (2018) Lithium clinics in Berlin and Dresden: a 50-year experience. Pharmacopsychiatry 51:166–171. https://doi.org/10.1055/a-0633-3450. (PMID: 10.1055/a-0633-345029902821)
Tsaltas E, Kontis D, Boulougouris V, Papadimitriou GN (2009) Lithium and cognitive enhancement: leave it or take it? Psychopharmacology 202:457–476. https://doi.org/10.1007/s00213-008-1241-5. (PMID: 10.1007/s00213-008-1241-518781296)
Wong SK, Chin KY, Ima-Nirwana S (2020) The skeletal-protecting action and mechanisms of action for mood-stabilizing drug lithium chloride: current evidence and future potential research areas. Front Pharmacol 11:430. https://doi.org/10.3389/fphar.2020.00430. (PMID: 10.3389/fphar.2020.00430323179777154099)
Bai J, Xu Y, Dieo Y, Sun G (2019) Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats. J Orthop Surg Res 14:177. https://doi.org/10.1186/s13018-019-1210-1. (PMID: 10.1186/s13018-019-1210-1311961336567919)
Tang L, Chen Y, Pei F, Zhang H (2015) Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 37:143–152. https://doi.org/10.1159/000430340. (PMID: 10.1159/00043034026303458)
Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102:17406–17411. https://doi.org/10.1073/pnas.0505259102. (PMID: 10.1073/pnas.0505259102162936981297659)
Pan J, He S, Yin X, Li Y, Zhou C, Zou S (2017) Lithium enhances alveolar bone formation during orthodontic retention in rats. Orthod Craniofac Res 20:146–151. https://doi.org/10.1111/ocr.12190. (PMID: 10.1111/ocr.1219028670780)
Nordenström J, Elvius M, Bågedahl-Strindlund M, Zhao B, Törring O (1994) Biochemical hyperparathyroidism and bone mineral status in patients treated long-term with lithium. Metabolism 43:1563–1567. https://doi.org/10.1016/0026-0495(94)90017-5. (PMID: 10.1016/0026-0495(94)90017-57990712)
Zamani A, Omrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44:331–334. https://doi.org/10.1016/j.bone.2008.10.001. (PMID: 10.1016/j.bone.2008.10.00118992857)
Bernick J, Wang Y, Sigal IA, Alman BA, Whyne CM, Nam D (2014) Parameters for lithium treatment are critical in its enhancement of fracture-healing in rodents. J Bone Joint Surg Am 96:1990–1998. https://doi.org/10.2106/JBJS.N.00057. (PMID: 10.2106/JBJS.N.00057254719144249593)
Vachhani K, Pagotto A, Wang Y, Whyne C, Nam D (2018) Design of experiments confirms optimization of lithium administration parameters for enhanced fracture healing. J Biomech 66:153–158. https://doi.org/10.1016/j.jbiomech.2017.09.043. (PMID: 10.1016/j.jbiomech.2017.09.04329162229)
Jin Y, Xu L, Hu X, Liao S, Pathak JL, Liu J (2017) Lithium chloride enhances bone regeneration and implant osseointegration in osteoporotic conditions. J Bone Miner Metab 35:497–503. https://doi.org/10.1007/s00774-016-0783-6. (PMID: 10.1007/s00774-016-0783-627714461)
Posch AT, de Avellar-Pinto JF, Malta FS, Marins LM, Teixeira LN, Peruzzo DC, Martinez EF, Clemente-Napimoga JT, Duarte PM, Napimoga MH (2020) Lithium chloride improves bone filling around implants placed in estrogen-deficient rats. Arch Oral Biol 111:104644. https://doi.org/10.1016/j.archoralbio.2019.104644. (PMID: 10.1016/j.archoralbio.2019.10464431896027)
Ino-Kondo A, Hotokezaka H, Kondo T, Arizono K, Hashimoto M, Hotokezaka Y, Kurohama T, Morita Y, Yoshida N (2018) Lithium chloride reduces orthodontically induced root resorption and affects tooth root movement in rats. Angle Orthod 88:474–482. https://doi.org/10.2319/112017-801.1. (PMID: 10.2319/112017-801.1296076728191937)
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S (2021) Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 6:3074–3084. https://doi.org/10.1016/j.bioactmat.2021.02.015. (PMID: 10.1016/j.bioactmat.2021.02.015337781897960682)
Tang GH, Xu J, Chen RJ, Qian YF, Shen G (2011) Lithium delivery enhances bone growth during midpalatal expansion. J Dent Res 90:336–340. https://doi.org/10.1177/0022034510389180. (PMID: 10.1177/002203451038918021118797)
Naruse H, Itoh S, Itoh Y, Kagioka T, Abe M, Hayashi M (2021) The Wnt/β-catenin signaling pathway has a healing ability for periapical periodontitis. Sci Rep 11:19673. https://doi.org/10.1038/s41598-021-99231-x. (PMID: 10.1038/s41598-021-99231-x346082368490427)
Han P, Ivanovski S, Crawford R, Xiao Y (2015) Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30(7):1160–1174. https://doi.org/10.1002/jbmr.2445. (PMID: 10.1002/jbmr.244525556853)
Zeng YT, Fu B, Tang GH, Zhang L, Qian YF (2013) Effects of lithium on extraction socket healing in rats assessed with micro-computed tomography. Acta Odontol Scand 71:1335–1340. https://doi.org/10.3109/00016357.2013.764004. (PMID: 10.3109/00016357.2013.76400423351165)
Duarte PM, Miranda TS, Marins LM, Perez EG, Copes LG, Tonietto CB, Montalli VAM, Malta FS, Napimoga MH (2020) Systemic lithium chloride administration improves tooth extraction wound healing in estrogen-deficient rats. Braz Dent J 31:640–649. https://doi.org/10.1590/0103-6440202003595. (PMID: 10.1590/0103-644020200359533237236)
Bezerra JP, de Siqueira A, Pires AG, Marques MR, Duarte PM, Bastos MF (2013) Effects of estrogen deficiency and/or caffeine intake on alveolar bone loss, density, and healing: a study in rats. J Periodontol 84:839–849. https://doi.org/10.1902/jop.2012.120192. (PMID: 10.1902/jop.2012.12019222873654)
Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue — a review. Diagn Pathol 9:221. https://doi.org/10.1186/s13000-014-0221-9. (PMID: 10.1186/s13000-014-0221-9254327014260254)
Bord S (2003) Protein localization in wax-embedded and frozen sections of bone using immunohistochemistry. Methods Mol Med 80:237–247. https://doi.org/10.1385/1-59259-366-6:237. (PMID: 10.1385/1-59259-366-6:23712728722)
Araújo MG, Silva CO, Misawa M (2000) Sukekava F (2015) Alveolar socket healing: what can we learn? Periodontol 68:122–134. https://doi.org/10.1111/prd.12082. (PMID: 10.1111/prd.12082)
Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425(6961):977–980. https://doi.org/10.1038/nature02079. (PMID: 10.1038/nature0207914586470)
Kruger TE, Miller AH, Godwin AK, Wang J (2014) Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 89:330–341. https://doi.org/10.1016/j.critrevonc.2013.08.013. (PMID: 10.1016/j.critrevonc.2013.08.01324071501)
Zoch ML, Clemens TL, Riddle RC (2016) New insights into the biology of osteocalcin. Bone 82:42–49. https://doi.org/10.1016/j.bone.2015.05.046. (PMID: 10.1016/j.bone.2015.05.04626055108)
Bailey S, Karsenty G, Gundberg C, Vashishth D (2017) Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci 1409:79–84. https://doi.org/10.1111/nyas.13470. (PMID: 10.1111/nyas.13470290445945730490)
Icer MA, Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59:17–24. https://doi.org/10.1016/j.clinbiochem.2018.07.003. (PMID: 10.1016/j.clinbiochem.2018.07.00330003880)
Singh A, Gill G, Kaur H, Amhmed M, Jakhu H (2018) Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod 19:18. https://doi.org/10.1186/s40510-018-0216-2. (PMID: 10.1186/s40510-018-0216-2299382976015792)
Komori T (2020) Functions of osteocalcin in bone, pancreas, testis, and muscle Int J Mol Sci 21:7513. https://doi.org/10.3390/ijms21207513.
Zhang J, Tu Q, Chen J (2009) Applications of transgenics in studies of bone sialoprotein. J Cell Physiol 220:30–34. https://doi.org/10.1002/jcp.21768. (PMID: 10.1002/jcp.21768193263952826241)
Klein A, Baranowski A, Ritz U, Mack C, Götz H, Langendorf E, Al-Nawas B, Drees P, Rommens PM, Hofmann A (2020) Effect of bone sialoprotein coating on progression of bone formation in a femoral defect model in rats. Eur J Trauma Emerg Surg 46:277–286. https://doi.org/10.1007/s00068-019-01159-5. (PMID: 10.1007/s00068-019-01159-531139842)
Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146. https://doi.org/10.1016/j.abb.2008.03.018. (PMID: 10.1016/j.abb.2008.03.018183955082413418)
Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JM, García-García A (2010) RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:679–686. https://doi.org/10.1016/j.tripleo.2009.10.042. (PMID: 10.1016/j.tripleo.2009.10.04220163972)
Yu Z, Fan L, Li J, Ge Z, Dang X, Wang K (2015) Lithium chloride attenuates the abnormal osteogenic/adipogenic differentiation of bone marrow-derived mesenchymal stem cells obtained from rats with steroid-related osteonecrosis by activating the β-catenin pathway. Int J Mol Med 36:1264–1272. https://doi.org/10.3892/ijmm.2015.2340. (PMID: 10.3892/ijmm.2015.2340263525374601745)
Song H, Deng B, Zou C, Huai W, Zhao R, Zhao W (2015) GSK3β negatively regulates LPS-induced osteopontin expression via inhibiting its transcription. Scand J Immunol 81:186–191. https://doi.org/10.1111/sji.12268. (PMID: 10.1111/sji.1226825565601)
de Souza MF, Napimoga MH, Marins LM, Miranda TS, de Oliveira FB, Posch AT, Feres M, Duarte PM (2020) Lithium chloride assuages bone loss in experimental periodontitis in estrogen-deficient rats. Clin Oral Investig 24:2025–2036. https://doi.org/10.1007/s00784-019-03067-9. (PMID: 10.1007/s00784-019-03067-9)
Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41:218–223. https://doi.org/10.1080/08916930701694667. (PMID: 10.1080/0891693070169466718365835)
Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG (2006) Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 119(Pt 7):1283–1296. https://doi.org/10.1242/jcs.02883. (PMID: 10.1242/jcs.0288316522681)
Qi J, Hu KS, Yang HL (2015) Roles of TNF-α, GSK-3β and RANKL in the occurrence and development of diabetic osteoporosis. Int J Clin Exp Pathol 8:11995–12004. (PMID: 267223854680330)
Ek-Rylander B, Andersson G (2010) Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp Cell Res 316:443–451. https://doi.org/10.1016/j.yexcr.2009.10.019. (PMID: 10.1016/j.yexcr.2009.10.01919854170)
Katoh M, Katoh M (2017) Molecular genetics and targeted therapy of Wnt-related human diseases (review). Int J Mol Med 40:587–606. https://doi.org/10.3892/ijmm.2017.3071. (PMID: 10.3892/ijmm.2017.3071287311485547940)
Huybrechts Y, Mortier G, Boudin E (2020) Van Hul W (2020) Wnt signaling and bone: lessons from skeletal dysplasias and disorders. Front Endocrinol (Lausanne) 11:165. https://doi.org/10.3389/fendo.2020.00165. (PMID: 10.3389/fendo.2020.0016532328030)
Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459. https://doi.org/10.1073/pnas.93.16.8455. (PMID: 10.1073/pnas.93.16.8455871089238692)
Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282:11221–11229. https://doi.org/10.1074/jbc.M611871200. (PMID: 10.1074/jbc.M61187120017287208)
Zhong Z, Ethen NJ, Williams BO (2014) Wnt signaling in bone development and homeostasis. Wiley Interdiscip Rev Dev Biol 3:489–500. https://doi.org/10.1002/wdev.159. (PMID: 10.1002/wdev.159252707164199871)
Livingstone C (2006) Rampes H (2006) Lithium: a review of its metabolic adverse effects. J Psychopharmacol 20:347–355. https://doi.org/10.1177/0269881105057515. (PMID: 10.1177/026988110505751516174674)
فهرسة مساهمة: Keywords: Lithium chloride; Osteocalcin; Osteopontin; Osteoprotegerin; RANK ligand; Tooth extraction
المشرفين على المادة: G4962QA067 (Lithium Chloride)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
104982-03-8 (Osteocalcin)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20221015 Date Completed: 20240307 Latest Revision: 20240307
رمز التحديث: 20240307
DOI: 10.1007/s10006-022-01124-4
PMID: 36242702
قاعدة البيانات: MEDLINE
الوصف
تدمد:1865-1569
DOI:10.1007/s10006-022-01124-4