دورية أكاديمية

Feeder cell-dependent primary culture of single blastula-derived embryonic cell lines from marine medaka (Oryzias dancena).

التفاصيل البيبلوغرافية
العنوان: Feeder cell-dependent primary culture of single blastula-derived embryonic cell lines from marine medaka (Oryzias dancena).
المؤلفون: Son MJ; Department of Fisheries Biology, Pukyong National University, Busan, 48513, Korea., Gong SP; Department of Fisheries Biology, Pukyong National University, Busan, 48513, Korea. gongsp@pknu.ac.kr.; Division of Fisheries Life Science, Major in Aquaculture and Applied Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Korea. gongsp@pknu.ac.kr.
المصدر: In vitro cellular & developmental biology. Animal [In Vitro Cell Dev Biol Anim] 2022 Oct; Vol. 58 (9), pp. 840-850. Date of Electronic Publication: 2022 Oct 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9418515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1543-706X (Electronic) Linking ISSN: 10712690 NLM ISO Abbreviation: In Vitro Cell Dev Biol Anim Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer
Original Publication: Columbia, MD : Tissue Culture Association, c1993-
مواضيع طبية MeSH: Oryzias*, Animals ; Feeder Cells ; Blastula ; Cell Differentiation ; Cell Line
مستخلص: Fish embryonic stem cells (ESCs) are derived from blastomeres that have been cultured from blastula embryos. The most widely used method for derivation of fish ESCs is the culture of blastomeres that have been isolated from approximately 10 blastula embryos under feeder-free conditions. However, this method leads to intercellular genetic heterogeneity among the cultured cells, which is a major obstacle to the development of stable ESC culture conditions. In this study, to establish ESC lines with intercellular genetic homogeneity at the early stage of culture, we attempted to derive embryonic cell lines from single blastula-derived blastomeres of marine medaka (Oryzias dancena) in a feeder cell culture system. Using basic fibroblast growth factor-expressing feeder cells during primary culture, we successfully established 22 single blastula-derived embryonic cell lines that could be subcultured more than 20 times. In contrast, we were unable to efficiently derive cell lines using wild-type feeder cells and under feeder-free conditions. The established cell lines exhibited ESC-like cell characteristics in terms of alkaline phosphatase activity, pluripotency-related gene expression, and embryoid body formation. The results of this study will contribute to the development of methods for derivation of fish ESCs.
(© 2022. The Society for In Vitro Biology.)
References: Alvarez MC, Bejar J, Chen S, Hong Y (2007) Fish ES cells and applications to biotechnology. Mar Biotechnol 9:117–127. (PMID: 10.1007/s10126-006-6034-4)
Bialkowska AB, Yang VW, Mallipattu SK (2017) Krüppel-like factors in mammalian stem cells and development. Development 144:737–754. (PMID: 10.1242/dev.145441282462095374354)
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. (PMID: 10.1016/j.cell.2005.08.020161537023006442)
Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1:2082–2087. (PMID: 10.1038/nprot.2006.35517487198)
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655. (PMID: 10.1016/S0092-8674(03)00392-112787505)
Choi JH, Gong SP (2018) Effects of temperatures and basal media on primary culture of the blastomeres derived from the embryos at blastula stage in marine medaka Oryzias Dancena. J Embryo Transfer 33:343–348.
Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437–446. (PMID: 10.1016/j.stemcr.2016.02.005269479774834040)
Eiselleova L, Peterkova I, Neradil J, Slaninova I, Hampl A, Dvorak P (2008) Comparative study of mouse and human feeder cells for human embryonic stem cells. Int J Dev Biol 52:353–363. (PMID: 10.1387/ijdb.082590le18415935)
Elling U, Woods M, Forment JV, Fu B, Yang F, Ng BL, Vicente JR, Adams DJ, Doe B, Jackson SP, Penninger JM, Balmus G (2019) Derivation and maintenance of mouse haploid embryonic stem cells. Nat Protoc 14:1991–2014. (PMID: 10.1038/s41596-019-0169-z311607886997032)
Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J (2017) Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Develop Growth Differ 59:83–93. (PMID: 10.1111/dgd.12341)
Freshney RI (2010) Culture of animal cells: a manual of basic technique and specialized applications. Wiley-Liss, New York. (PMID: 10.1002/9780470649367)
Gong SP, Kim H, Lee EJ, Lee ST, Moon S, Lee HJ, Lim JM (2009) Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod 24:805–814. (PMID: 10.1093/humrep/den38819106175)
Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464. (PMID: 10.1634/stemcells.2006-047617038665)
Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, Hong Y, Chan WK, Shu AC (2014) Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11:407–420. (PMID: 10.1089/zeb.2013.0879249677074172385)
Hong Y, Schartl M (2006) Isolation and differentiation of medaka embryonic stem cells. Methods Mol Biol 329:3–16. (PMID: 16845980)
Hu B, Lefort K, Qiu W, Nguyen BC, Rajaram RD, Castillo E, He F, Chen Y, Angel P, Brisken C, Dotto GP (2010) Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev 24:1519–1532. (PMID: 10.1101/gad.1886910206343182904942)
Kim YY, Oh SK, Choi YM (2007) Feeder cells for culture of human embryonic stem cells. Korean J Reprod Med 34:219–277. (PMID: 10.3346/jkms.2019.34.e219)
Kueh J, Richards M, Ng SW, Chan WK, Bongso A (2006) The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression. Fertil Steril 85:1843–1846. (PMID: 10.1016/j.fertnstert.2005.11.04216674954)
Laslett AL, Filipczyk AA, Pera MF (2003) Characterization and culture of human embryonic stem cells. Trends Cardiovasc Med 13:295–301. (PMID: 10.1016/S1050-1738(03)00125-714522470)
Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquat Sci 16:177–185.
Lee DW, Ryu JH, Lee ST, Nam YK, Kim DS, Gong SP (2015) Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). Fish Physiol Biochem 41:1569–1576. (PMID: 10.1007/s10695-015-0108-z26239820)
Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574. (PMID: 10.1634/stemcells.2005-024716282444)
Llames S, García-Pérez E, Meana Á, Larcher F, Río M (2015) Feeder layer cell actions and applications. Tissue Eng Part B Rev 21:345–353. (PMID: 10.1089/ten.teb.2014.0547256590814533020)
Namba M, Fukushima F, Kimoto T (1982) Effects of feeder layers made of human, mouse, hamster, and rat cells on the cloning efficiency of transformed human cells. In Vitro 18:469–475. (PMID: 10.1007/BF027964756749654)
Nishikawa S, Jakt LM, Era T (2007) Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 8:502–507. (PMID: 10.1038/nrm218917522593)
Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936. (PMID: 10.1038/nbt72612161760)
Roy A, Krzykwa E, Lemieux R, Néron S (2001) Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 10:873–880. (PMID: 10.1089/15258160131721096211798513)
Ryu JH, Gong SP (2017) Effects of the developmental stage of extract donor embryos on the culture of marine medaka Oryzias dancena embryonic stem cell-like cells. Korean J Fish Aquat Sci 50:160–168.
Ryu JH, Gong SP (2020) Effects of feeder cells on the primary culture of ovarian cell populations from adult Japanese medaka (Oryzias latipes). J Anim Reprod Biotechnol 35:65–72. (PMID: 10.12750/JARB.35.1.65)
Scheper W, Copray S (2009) The molecular mechanism of induced pluripotency: a two-stage switch. Stem Cell Rev Rep 5:204–223. (PMID: 10.1007/s12015-009-9077-x19551525)
Schwartz PH, Brick DJ, Nethercott HE, Stover AE (2011) Traditional human embryonic stem cell culture. In: Schwartz P., Wesselschmidt R (eds) Human pluripotent stem cells. Methods in Molecular Biology (Methods and Protocols), vol 767. Humana Press.
Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J, Murdoch A, Strachan T, Stojkovic M (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314. (PMID: 10.1634/stemcells.2004-013715749925)
Song HY, Nam YK, Bang IC, Kim DS (2009) Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor J Ichthyol 21:227–238.
Wang ZX, The CHL, Chan CMY, Chu C, Rossbach M, Kunarso G, Allapitchay TB, Wong KY, Stanton LW (2008) The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 26:2791–2799. (PMID: 10.1634/stemcells.2008-044318757296)
Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433. (PMID: 10.1126/science.117515119833967)
Yi M, Hong N, Hong Y (2010) Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5:1418–1430. (PMID: 10.1038/nprot.2010.10420671725)
Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123. (PMID: 10.1038/ncb148116980957)
معلومات مُعتمدة: 2021 Pukyong National University
فهرسة مساهمة: Keywords: Basic fibroblast growth factor; Cell lines; Cellular homogeneity; Embryonic stem cells; Feeder cells
تواريخ الأحداث: Date Created: 20221017 Date Completed: 20221201 Latest Revision: 20221201
رمز التحديث: 20221201
DOI: 10.1007/s11626-022-00727-1
PMID: 36251152
قاعدة البيانات: MEDLINE
الوصف
تدمد:1543-706X
DOI:10.1007/s11626-022-00727-1