دورية أكاديمية

Evolution of immune genes is associated with the Black Death.

التفاصيل البيبلوغرافية
العنوان: Evolution of immune genes is associated with the Black Death.
المؤلفون: Klunk J; McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada.; Daicel Arbor Biosciences, Ann Arbor, MI, USA., Vilgalys TP; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA., Demeure CE; Yersinia Research Unit, Institut Pasteur, Paris, France., Cheng X; Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA., Shiratori M; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA., Madej J; Yersinia Research Unit, Institut Pasteur, Paris, France., Beau R; Yersinia Research Unit, Institut Pasteur, Paris, France., Elli D; Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA., Patino MI; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA., Redfern R; Centre for Human Bioarchaeology, Museum of London, London, UK., DeWitte SN; Department of Anthropology, University of South Carolina, Columbia, SC, USA., Gamble JA; Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada., Boldsen JL; Department of Forensic Medicine, Unit of Anthropology (ADBOU), University of Southern Denmark, Odense S, Denmark., Carmichael A; History Department, Indiana University, Bloomington, IN, USA., Varlik N; Department of History, Rutgers University, Newark, NJ, USA., Eaton K; McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada., Grenier JC; Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada., Golding GB; McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada., Devault A; Daicel Arbor Biosciences, Ann Arbor, MI, USA., Rouillard JM; Daicel Arbor Biosciences, Ann Arbor, MI, USA.; Department of Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA., Yotova V; Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada., Sindeaux R; Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada., Ye CJ; Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA.; Institute for Human Genetics, University of California, San Francisco, CA, USA., Bikaran M; Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA.; Institute for Human Genetics, University of California, San Francisco, CA, USA., Dumaine A; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA., Brinkworth JF; Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA.; Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Missiakas D; Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA., Rouleau GA; Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada., Steinrücken M; Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.; Department of Human Genetics, University of Chicago, Chicago, IL, USA., Pizarro-Cerdá J; Yersinia Research Unit, Institut Pasteur, Paris, France., Poinar HN; McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada. poinarh@mcmaster.ca.; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada. poinarh@mcmaster.ca.; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada. poinarh@mcmaster.ca., Barreiro LB; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA. lbarreiro@uchicago.edu.; Department of Human Genetics, University of Chicago, Chicago, IL, USA. lbarreiro@uchicago.edu.; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA. lbarreiro@uchicago.edu.; Committee on Immunology, University of Chicago, Chicago, IL, USA. lbarreiro@uchicago.edu.
المصدر: Nature [Nature] 2022 Nov; Vol. 611 (7935), pp. 312-319. Date of Electronic Publication: 2022 Oct 19.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: DNA, Ancient* , Plague*/genetics , Plague*/immunology , Plague*/microbiology , Plague*/mortality , Yersinia pestis*/immunology , Yersinia pestis*/pathogenicity , Selection, Genetic*/immunology , Immunity*/genetics , Genetic Predisposition to Disease*, Humans ; Aminopeptidases/genetics ; Aminopeptidases/immunology ; Europe/epidemiology ; Europe/ethnology ; Datasets as Topic ; London/epidemiology ; Denmark/epidemiology
مستخلص: Infectious diseases are among the strongest selective pressures driving human evolution 1,2 . This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis 3 . This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population 4 . To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nature. 2022 Nov;611(7935):237-238. (PMID: 36261712)
Comment in: Trends Immunol. 2023 Feb;44(2):90-92. (PMID: 36526581)
Comment in: Gastroenterology. 2023 Apr;164(4):696. (PMID: 36608717)
References: Inhorn, M. C. & Brown, P. J. The anthropology of infectious disease. Anu. Rev. Anthrolpol. 19, 89–117 (1990). (PMID: 10.1146/annurev.an.19.100190.000513)
Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011). (PMID: 22072984320787710.1371/journal.pgen.1002355)
Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011). (PMID: 21993626369019310.1038/nature10549)
Benedictow, O. J. The Black Death, 1346–1353: The Complete History (Boydell Press, 2004).
Quintana-Murci, L. & Clark, A. G. Population genetic tools for dissecting innate immunity in humans. Nat. Rev. Immun. 13, 280 (2013). (PMID: 10.1038/nri3421)
Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15, 379–393 (2014). (PMID: 24776769491203410.1038/nrg3734)
Allison, A. C. Genetic control of resistance to human malaria. Curr. Opin. Immunol. 21, 499–505 (2009). (PMID: 1944250210.1016/j.coi.2009.04.001)
Kerner, G. et al. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 108, 517–524 (2021). (PMID: 33667394800848910.1016/j.ajhg.2021.02.009)
Varlık, N. New science and old sources: why the Ottoman experience of plague matters. The Medieval Globe 1, 9 (2014).
Stathakopoulos, D. C. Famine and Pestilence in the Late Roman and Early Byzantine Empire: A Systematic Survey of Subsistence Crises and Epidemics (Routledge, 2017).
Green, M. H. The four Black Deaths. Am. Hist. Rev. 125, 1601–1631 (2021). (PMID: 10.1093/ahr/rhaa511)
DeWitte, S. N. & Wood, J. W. Selectivity of Black Death mortality with respect to preexisting health. Proc. Natl Acad. Sci. USA 105, 1436–1441 (2008). (PMID: 18227518223416210.1073/pnas.0705460105)
Earn, D. J., Ma, J., Poinar, H., Dushoff, J. & Bolker, B. M. Acceleration of plague outbreaks in the second pandemic. Proc. Natl Acad. Sci. USA 117, 27703–27711 (2020). (PMID: 33077604795950810.1073/pnas.2004904117)
Immel, A. et al. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol. Biol. Evol. 38, 4059–4076 (2021). (PMID: 34002224847617410.1093/molbev/msab147)
Di, D., Simon Thomas, J., Currat, M., Nunes, J. M. & Sanchez-Mazas, A. Challenging ancient DNA results about putative HLA protection or susceptibility to Yersinia pestis. Mol. Bio. Evol. 39, 1537–1719 (2022). (PMID: 10.1093/molbev/msac073)
Grainger, I., Hawkins, D., Cowal, L. & Mikulski, R. The Black Death Cemetery, East Smithfield, London (Museum of London Archaeology Service, 2008).
Klunk, J. et al. Genetic resiliency and the Black Death: no apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. Am. J. Phys. Anthropol. 169, 240–252 (2019). (PMID: 3096454810.1002/ajpa.23820)
Morin, P. A., Chambers, K. E., Boesch, C. & Vigilant, L. Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol. Ecol. 10, 1835–1844 (2001). (PMID: 1147255010.1046/j.0962-1083.2001.01308.x)
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011). (PMID: 21926973324587310.1038/ng.937)
Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008). (PMID: 18493066239062610.1534/genetics.107.085019)
Andrés, A. M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010). (PMID: 20976248295482510.1371/journal.pgen.1001157)
Ye, C. J. et al. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Research 28, 1812–1825 (2018). (PMID: 30446528628075710.1101/gr.240390.118)
Pachulec, E. et al. Enhanced macrophage M1 polarization and resistance to apoptosis enable resistance to plague. J. Infect. Dis. 216, 761–770 (2017). (PMID: 2893442610.1093/infdis/jix348)
Shannon, J. G., Bosio, C. F. & Hinnebusch, B. J. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 11, e1004734 (2015). (PMID: 25781984436362910.1371/journal.ppat.1004734)
Pujol, C. & Bliska, J. B. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect. Immun. 71, 5892–5899 (2003). (PMID: 1450051020105810.1128/IAI.71.10.5892-5899.2003)
Arifuzzaman, M. et al. Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight 3, e122188 (2018). (PMID: 623723610.1172/jci.insight.122188)
Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016). (PMID: 2776888910.1016/j.cell.2016.09.025)
Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016). (PMID: 27768888507528510.1016/j.cell.2016.09.024)
Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003). (PMID: 14517278219421010.1084/jem.20031023)
Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002). (PMID: 1211791612816510.1128/IAI.70.8.4092-4098.2002)
Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008). (PMID: 18297073411282510.1038/ni1569)
Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase: the third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003). (PMID: 1279936510.1074/jbc.M305076200)
Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immun. 6, 689–697 (2005). (PMID: 10.1038/ni1208)
Yao, Y., Liu, N., Zhou, Z. & Shi, L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum. Immunol. 80, 325–334 (2019). (PMID: 3079782310.1016/j.humimm.2019.02.011)
Saulle, I., Vicentini, C., Clerici, M. & Blasin, M. An overview on ERAP roles in infectious diseases. Cells 9, 720 (2020). (PMID: 714069610.3390/cells9030720)
Tedeschi, V. et al. The impact of the ‘mis-peptidome’ on HLA class I-mediated diseases: contribution of ERAP1 and ERAP2 and effects on the immune response. Int. J. Mol. Sci. 21, 9608 (2020). (PMID: 776599810.3390/ijms21249608)
Lorente, E. et al. Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2). Mol. Cell. Proteomics 19, P994–P1004 (2020).
Bergman, M. A., Loomis, W. P., Mecsas, J., Starnbach, M. N. & Isberg, R. R. CD8+ T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog. 5, e1000573 (2009). (PMID: 19730693273121610.1371/journal.ppat.1000573)
Szaba, F. M. et al. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection. PLoS Pathog. 10, e1004142 (2014). (PMID: 24854422403118210.1371/journal.ppat.1004142)
Saulle, I. et al. ERAPs reduce in vitro HIV infection by activating innate immune response. J. Immunol. 206, 1609–1617 (2021). (PMID: 33619214798052810.4049/jimmunol.2000991)
Jordan, W. C. The Great Famine: Northern Europe in the Early Fourteenth Century (Princeton Univ. Press, 1997).
Hoyle, R. in Famine in European History (eds Alfani, G. & Gráda, C. Ó.) 141–165 (Cambridge Univ. Press, 2017).
DeWitte, S. & Slavin, P. Between famine and death: England on the eve of the Black Death—evidence from paleoepidemiology and manorial accounts. J. Interdiscipl. Hist. 44, 37–60 (2013). (PMID: 10.1162/JINH_a_00500)
Ratner, D. et al. Manipulation of interleukin-1β and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J. Biol. Chem. 291, 9894–9905 (2016).
Di Narzo, A. F. et al. Blood and intestine eQTLs from an anti-TNF-resistant Crohn’s disease cohort inform IBD genetic association loci. Clin. Transl. Gastroen. 7, e177 (2016). (PMID: 10.1038/ctg.2016.34)
Laufer, V. A. et al. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum. Mol. Genet. 28, 858–874 (2019). (PMID: 3042311410.1093/hmg/ddy395)
Wang, Y. et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 12, 771 (2021).
Sidell, J., Thomas, C. & Bayliss, A. Validating and improving archaeological phasing at St. Mary Spital, London. Radiocarbon 49, 593–610 (2007). (PMID: 10.1017/S0033822200042491)
Krylova, O. & Earn, D. J. Patterns of smallpox mortality in London, England, over three centuries. PLoS Biol. 18, e3000506 (2020). (PMID: 33347440775188410.1371/journal.pbio.3000506)
Greater London, Inner London & Outer London population & density history. Demographia http://www.demographia.com/dm-lon31.htm (2001).
Consortium, G. P. A global reference for human genetic variation. Nature 526, 68–74 (2015). (PMID: 10.1038/nature15393)
معلومات مُعتمدة: P30 DK042086 United States DK NIDDK NIH HHS; F32 GM140568 United States GM NIGMS NIH HHS; R01 GM146051 United States GM NIGMS NIH HHS; R56 AI146556 United States AI NIAID NIH HHS; R01 GM134376 United States GM NIGMS NIH HHS
المشرفين على المادة: EC 3.4.11.- (Aminopeptidases)
0 (DNA, Ancient)
EC 3.4.11.- (ERAP2 protein, human)
تواريخ الأحداث: Date Created: 20221019 Date Completed: 20221118 Latest Revision: 20240214
رمز التحديث: 20240214
مُعرف محوري في PubMed: PMC9580435
DOI: 10.1038/s41586-022-05349-x
PMID: 36261521
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05349-x