دورية أكاديمية

Single-cell genomic variation induced by mutational processes in cancer.

التفاصيل البيبلوغرافية
العنوان: Single-cell genomic variation induced by mutational processes in cancer.
المؤلفون: Funnell T; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA.; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., O'Flanagan CH; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Williams MJ; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. william1@mskcc.org., McPherson A; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., McKinney S; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Kabeer F; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada., Lee H; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada., Salehi S; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Vázquez-García I; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Shi H; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Leventhal E; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Masud T; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Eirew P; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Yap D; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Zhang AW; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Lim JLP; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Wang B; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Brimhall J; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Biele J; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Ting J; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Au V; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Van Vliet M; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Liu YF; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Beatty S; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Lai D; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada., Pham J; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Grewal D; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Abrams D; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Havasov E; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Leung S; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Bojilova V; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Moore RA; Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada., Rusk N; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Uhlitz F; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Ceglia N; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Weiner AC; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA.; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Zaikova E; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Douglas JM; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Zamarin D; GYN Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Weigelt B; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Kim SH; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Da Cruz Paula A; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Reis-Filho JS; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Martin SD; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada., Li Y; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Xu H; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., de Algara TR; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Lee SR; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Llanos VC; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada., Huntsman DG; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada., McAlpine JN; Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, British Columbia, Canada., Shah SP; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. shahs3@mskcc.org., Aparicio S; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada. saparicio@bccrc.ca.; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. saparicio@bccrc.ca.
مؤلفون مشاركون: IMAXT Consortium
المصدر: Nature [Nature] 2022 Dec; Vol. 612 (7938), pp. 106-115. Date of Electronic Publication: 2022 Oct 26.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Genomics* , Mutation* , Ovarian Neoplasms*/genetics , Ovarian Neoplasms*/pathology , Triple Negative Breast Neoplasms*/genetics , Triple Negative Breast Neoplasms*/pathology , Single-Cell Analysis*, Female ; Humans ; Phylogeny
مستخلص: How cell-to-cell copy number alterations that underpin genomic instability 1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer 2 , remains understudied. Here, by applying scaled single-cell whole-genome sequencing 3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.
(© 2022. The Author(s).)
References: Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020). (PMID: 32299917734710810.1126/science.aba0712)
Minussi, D. C. et al. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592, 302–308 (2021). (PMID: 33762732804910110.1038/s41586-021-03357-x)
Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179, 1207–1221 (2019). (PMID: 31730858691216410.1016/j.cell.2019.10.026)
Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605 (2008). (PMID: 18285820226203410.1038/emboj.2008.15)
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020). (PMID: 32025012702589710.1038/s41586-019-1913-9)
Macintyre, G. et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50, 1262–1270 (2018). (PMID: 30104763613081810.1038/s41588-018-0179-8)
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). (PMID: 23945592377639010.1038/nature12477)
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016). (PMID: 27135926491086610.1038/nature17676)
Shiraishi, Y., Tremmel, G., Miyano, S. & Stephens, M. A simple model-based approach to inferring and visualizing cancer mutation signatures. PLoS Genet. 11, e1005657 (2015). (PMID: 26630308466789110.1371/journal.pgen.1005657)
Funnell, T. et al. Integrated structural variation and point mutation signatures in cancer genomes using correlated topic models. PLoS Comput. Biol. 15, e1006799 (2019). (PMID: 30794536640269710.1371/journal.pcbi.1006799)
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012). (PMID: 10.1038/nature10983225229253440846)
Wang, Y. et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49, 856–865 (2017). (PMID: 2843698710.1038/ng.3849)
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017). (PMID: 28288110583394510.1038/nm.4292)
Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 1526–1533 (2019). (PMID: 31570822685907110.1038/s41591-019-0582-4)
Zahn, H. et al. Scalable whole-genome single-cell library preparation without preamplification. Nat. Methods 14, 167–173 (2017). (PMID: 2806831610.1038/nmeth.4140)
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 32025018705421310.1038/s41586-020-1943-3)
Nguyen, L., W M Martens, J., Van Hoeck, A. & Cuppen, E. Pan-cancer landscape of homologous recombination deficiency. Nat. Commun. 11, 5584 (2020). (PMID: 33149131764311810.1038/s41467-020-19406-4)
Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 595, 585–590 (2021). (PMID: 34163070839607310.1038/s41586-021-03648-3)
Burleigh, A. et al. A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Res. 17, 4 (2015). (PMID: 25572802432255810.1186/s13058-014-0510-y)
Schwarz, R. F. et al. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput. Biol. 10, e1003535 (2014). (PMID: 24743184399047510.1371/journal.pcbi.1003535)
Wu, C.-Y. et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer. Nat. Biotechnol. 39, 1259–1269 (2021). (PMID: 34017141912722610.1038/s41587-021-00911-w)
Zaccaria, S. & Raphael, B. J. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol. 39, 207–214 (2021). (PMID: 3287946710.1038/s41587-020-0661-6)
Wang, Y. et al. The negative interplay between Aurora A/B and BRCA1/2 controls cancer cell growth and tumorigenesis via distinct regulation of cell cycle progression, cytokinesis, and tetraploidy. Mol. Cancer 13, 94 (2014). (PMID: 24775809402810310.1186/1476-4598-13-94)
Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10 (1999). (PMID: 1044502210.1016/S1097-2765(00)80182-3)
Zeira, R. & Raphael, B. J. Copy number evolution with weighted aberrations in cancer. Bioinformatics 36, i344–i352 (2020). (PMID: 32657354735529110.1093/bioinformatics/btaa470)
Sanders, A. D. et al. Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nat. Biotechnol. 38, 343–354 (2020).
Zakov, S., Kinsella, M. & Bafna, V. An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proc. Natl Acad. Sci. USA 110, 5546–5551 (2013). (PMID: 23503850361937410.1073/pnas.1220977110)
Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl Acad. Sci. USA 97, 5357–5362 (2000). (PMID: 108057962583310.1073/pnas.090013497)
Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020). (PMID: 32879494761170610.1038/s41586-020-2698-6)
Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769 (2018). (PMID: 2975482010.1016/j.cell.2018.03.073)
McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016). (PMID: 2718296810.1038/ng.3573)
Patch, A.-M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015). (PMID: 2601744910.1038/nature14410)
Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015). (PMID: 2547004910.1038/nature13952)
Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012). (PMID: 2249531410.1038/nature10933)
Savage, P. et al. Chemogenomic profiling of breast cancer patient-derived xenografts reveals targetable vulnerabilities for difficult-to-treat tumors. Commun. Biol. 3, 310 (2020). (PMID: 32546838729804810.1038/s42003-020-1042-x)
Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008). (PMID: 18846088268358810.1038/nbt.1495)
Salehi, S. et al. Cancer phylogenetic tree inference at scale from 1000s of single cell genomes. Preprint at bioRxiv https://doi.org/10.1101/2020.05.06.058180 (2021).
Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019). (PMID: 30872802716851910.1038/s41568-019-0128-6)
Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210 (2020). (PMID: 33007263791253710.1016/j.cell.2020.08.006)
Annab, L. A. et al. Establishment and characterization of a breast cell strain containing a BRCA1 185delAG mutation. Gynecol. Oncol. 77, 121–128 (2000). (PMID: 1073970110.1006/gyno.2000.5734)
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019). (PMID: 3035739310.1093/nar/gky955)
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018). (PMID: 2916566910.1093/nar/gkx1153)
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019). (PMID: 3037187810.1093/nar/gky1015)
Létourneau, I. J. et al. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer. BMC Cancer 12, 379 (2012). (PMID: 22931248353215410.1186/1471-2407-12-379)
O’Flanagan, C. H. et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20, 210 (2019). (PMID: 31623682679632710.1186/s13059-019-1830-0)
Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data. Bioinformatics 28, 167–175 (2012). (PMID: 2208425310.1093/bioinformatics/btr629)
Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012). (PMID: 2258117910.1093/bioinformatics/bts271)
Chakravarty, D. et al. OncoKB: annotation of the oncogenic effect and treatment implications of somatic mutations in cancer. J. Clin. Oncol. 34, 11583–11583 (2016). (PMID: 10.1200/JCO.2016.34.15_suppl.11583)
McPherson, A., Shah, S. & Cenk Sahinalp, S. deStruct: accurate rearrangement detection using breakpoint specific realignment. Preprint at bioRxiv https://doi.org/10.1101/117523 (2017).
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014). (PMID: 24970577419782210.1186/gb-2014-15-6-r84)
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). (PMID: 29750242613799610.1093/bioinformatics/bty191)
Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20, 129 (2019). (PMID: 31234903659195410.1186/s13059-019-1727-y)
Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021). (PMID: 34725481857101510.1038/s41592-021-01299-w)
Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at bioRxiv https://doi.org/10.1101/085050 (2016).
Sedlazeck, F. J. et al. Tools for annotation and comparison of structural variation. F1000Res. 6, 1795 (2017). (PMID: 29123647566892110.12688/f1000research.12516.1)
Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020). (PMID: 32746918747783410.1186/s13059-020-02107-y)
Nattestad, M., Aboukhalil, R., Chin, C.-S. & Schatz, M. C. Ribbon: intuitive visualization for complex genomic variation. Bioinformatics 37, 413–415 (2021). (PMID: 3276681410.1093/bioinformatics/btaa680)
Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017). (PMID: 28575171587055010.1093/bioinformatics/btx346)
Robinson, P. & Jtel, T. Z. in Computational Exome and Genome Analysis (eds Robinson, P. N., Piro, R. M. & Jäger, M.) 233–245 (2017).
Hornik, K. A CLUE for CLUster Ensembles. J. Stat. Softw. 14, 1–25 (2005).
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2020).
McInnes, L. & Healy, J. Accelerated hierarchical density based clustering. In IEEE International Conference on Data Mining Workshops (ICDMW) 33–42 (IEEE, 2017).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).
Shah, S. P. et al. Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22, e431–e439 (2006). (PMID: 1687350410.1093/bioinformatics/btl238)
Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018). (PMID: 30254741612437710.12688/f1000research.15931.1)
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
Lee, S., Cook, D. & Lawrence, M. plyranges: a grammar of genomic data transformation. Genome Biol. 20, 4 (2019). (PMID: 30609939632061810.1186/s13059-018-1597-8)
Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020). (PMID: 3216285110.1002/cpbi.96)
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). (PMID: 1473432710.1093/bioinformatics/btg412)
Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018). (PMID: 2909199710.1093/bioinformatics/btx701)
Werner, B. et al. Measuring single cell divisions in human tissues from multi-region sequencing data. Nat. Commun. 11, 1035 (2020). (PMID: 32098957704231110.1038/s41467-020-14844-6)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 29608179670074410.1038/nbt.4096)
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). (PMID: 31178118668739810.1016/j.cell.2019.05.031)
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019). (PMID: 30954476662531910.1016/j.cels.2018.11.005)
Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics 37, 4569–4571 (2021).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
معلومات مُعتمدة: K99 CA256508 United States CA NCI NIH HHS; P30 CA008748 United States CA NCI NIH HHS; RM1 HG011014 United States HG NHGRI NIH HHS; United Kingdom CRUK_ Cancer Research UK
فهرسة مساهمة: Investigator: GJ Hannon; G Battistoni; D Bressan; IG Cannell; H Casbolt; C Jauset; T Kovačević; CM Mulvey; F Nugent; MP Ribes; I Pearson; F Qosaj; K Sawicka; SA Wild; E Williams; E Laks; A Smith; D Lai; A Roth; S Balasubramanian; M Lee; B Bodenmiller; M Burger; L Kuett; S Tietscher; J Windhager; ES Boyden; S Alon; Y Cui; A Emenari; DR Goodwin; ED Karagiannis; A Sinha; AT Wassie; C Caldas; A Bruna; M Callari; W Greenwood; G Lerda; Y Eyal-Lubling; OM Rueda; A Shea; O Harris; R Becker; F Grimaldo; S Harris; SL Vogl; JA Joyce; SS Watson; S Tavare; KN Dinh; E Fisher; R Kunes; NA Walton; M Al Sa'd; N Chornay; A Dariush; EA González-Solares; C González-Fernández; AK Yoldaş; N Miller; X Zhuang; J Fan; H Lee; LA Sepúlveda; C Xia; P Zheng
المشرفين على المادة: 0 (TP53 protein, human)
0 (BRCA1 protein, human)
0 (BRCA2 protein, human)
تواريخ الأحداث: Date Created: 20221026 Date Completed: 20221214 Latest Revision: 20240524
رمز التحديث: 20240524
مُعرف محوري في PubMed: PMC9712114
DOI: 10.1038/s41586-022-05249-0
PMID: 36289342
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05249-0