دورية أكاديمية

Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation.

التفاصيل البيبلوغرافية
العنوان: Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation.
المؤلفون: Riester O; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany.; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076, Tübingen, Germany., Burkhardtsmaier P; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany., Gurung Y; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany., Laufer S; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076, Tübingen, Germany.; Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), 72076, Tübingen, Germany., Deigner HP; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany.; Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076, Tübingen, Germany.; EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057, Rostock, Germany., Schmidt MS; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany. smag@hs-furtwangen.de.
المصدر: Scientific reports [Sci Rep] 2022 Oct 26; Vol. 12 (1), pp. 18019. Date of Electronic Publication: 2022 Oct 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Anti-Bacterial Agents*/pharmacology , Carbasugars*/pharmacology, Microbial Sensitivity Tests ; Escherichia coli ; Biofilms ; Penicillins/pharmacology ; Streptomycin/pharmacology
مستخلص: The widespread use of antibiotics in recent decades has been a major factor in the emergence of antibiotic resistances. Antibiotic-resistant pathogens pose increasing challenges to healthcare systems in both developing and developed countries. To counteract this, the development of new antibiotics or adjuvants to combat existing resistance to antibiotics is crucial. Glycomimetics, for example carbasugars, offer high potential as adjuvants, as they can inhibit metabolic pathways or biofilm formation due to their similarity to natural substrates. Here, we demonstrate the synthesis of carbasugar precursors (CSPs) and their application as biofilm inhibitors for E. coli and MRSA, as well as their synergistic effect in combination with antibiotics to circumvent biofilm-induced antibiotic resistances. This results in a biofilm reduction of up to 70% for the CSP rac-7 and a reduction in bacterial viability of MRSA by approximately 45% when combined with the otherwise ineffective antibiotic mixture of penicillin and streptomycin.
(© 2022. The Author(s).)
References: Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022). (PMID: 10.1016/S0140-6736(21)02724-0)
Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T. & Blatt, N. L. World Health Organization Report: Current crisis of antibiotic resistance. Bionanoscience 9, 778–788 (2019). (PMID: 10.1007/s12668-019-00658-4)
Douafer, H., Andrieu, V., Phanstiel, O. & Brunel, J. M. Antibiotic adjuvants: Make antibiotics great again!. J. Med. Chem. 62, 8665–8681 (2019). (PMID: 3106337910.1021/acs.jmedchem.8b01781)
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). (PMID: 2543530910.1038/nrmicro3380)
Boisvert, A.-A., Cheng, M. P., Sheppard, D. C. & Nguyen, D. Microbial biofilms in pulmonary and critical care diseases. Ann. Am. Thorac. Soc. 13, 1615–1623 (2016). (PMID: 27348071505950310.1513/AnnalsATS.201603-194FR)
Craft, K. M., Nguyen, J. M., Berg, L. J. & Townsend, S. D. Methicillin-resistant: Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. MedChemComm 10, 1231–1241 (2019). (PMID: 31534648674828210.1039/C9MD00044E)
Leaper, D., Assadian, O. & Edmiston, C. E. Approach to chronic wound infections. Br. J. Dermatol. 173, 351–358 (2015). (PMID: 2577295110.1111/bjd.13677)
Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34, 877–886 (2015). (PMID: 2563053810.1007/s10096-015-2323-z)
Lünse, C. E., Schmidt, M. S., Wittmann, V. & Mayer, G. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem. Biol. 6, 675–678 (2011). (PMID: 2148605910.1021/cb200016d)
Sommer, R. et al. Glycomimetic, orally bioavailable LecB inhibitors block biofilm formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 140, 2537–2545 (2018). (PMID: 2927257810.1021/jacs.7b11133)
Zorin, A., Klenk, L., Mack, T., Deigner, H.-P. & Schmidt, M. S. Current synthetic approaches to the synthesis of carbasugars from non-carbohydrate sources. Top. Curr. Chem. 380, 12 (2022). (PMID: 10.1007/s41061-022-00370-0)
Awolade, P. et al. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur. J. Med. Chem. 187, 111921 (2020). (PMID: 3183516810.1016/j.ejmech.2019.111921)
Lahiri, R., Ansari, A. A. & Vankar, Y. D. Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors. Chem. Soc. Rev. 42, 5102 (2013). (PMID: 2353582810.1039/c3cs35525j)
Osborn, H. M. I., Evans, P. G., Gemmell, N. & Osborne, S. D. Carbohydrate-based therapeutics. J. Pharm. Pharmacol. 56, 691–702 (2010). (PMID: 10.1211/0022357023619)
McCasland, G. E., Furuta, S. & Durham, L. J. Alicyclic carbohydrates XXXIII. Epimerization of pseudo-.alpha.- DL-: Talopyranose to pseudo-.alpha.-DL-galactopyranose. Proton magnetic resonance studies. J. Org. Chem. 33, 2841–2844 (1968). (PMID: 574284910.1021/jo01271a050)
McCasland, G. E., Furuta, S. & Durham, L. J. Alicyclic carbohydrates. XXIX. 1,2 The synthesis of a pseudo-hexose (2,3,4,5-tetrahydroxycyclohexanemethanol). J. Org. Chem. 31, 1516–1521 (1966). (PMID: 10.1021/jo01343a048)
Arjona, O., Gómez, A. M., López, J. C. & Plumet, J. Synthesis and conformational and biological aspects of carbasugars. Chem. Rev. 107, 1919–2036 (2007). (PMID: 1748806010.1021/cr0203701)
Roscales, S. & Plumet, J. Biosynthesis and biological activity of carbasugars. Int. J. Carbohydr. Chem. 2016, 1–42 (2016). (PMID: 10.1155/2016/4760548)
Babu, D. C., Rao, C. B., Venkatesham, K., Selvam, J. J. P. & Venkateswarlu, Y. Toward synthesis of carbasugars (+)-gabosine C, (+)-COTC, (+)-pericosine B, and (+)-pericosine C. Carbohydr. Res. 388, 130–137 (2014). (PMID: 2463704710.1016/j.carres.2013.08.008)
Banachowicz, P. & Buda, S. Gram-scale carbasugar synthesis via intramolecular seleno-Michael/aldol reaction. RSC Adv. 9, 12928–12935 (2019). (PMID: 35520757906374810.1039/C9RA02002K)
Sun, Y. & Nitz, M. Syntheses of carbocyclic analogues of α-d-glucosamine, α-d-mannose, α-d-mannuronic acid, β-l-idosamine, and β-l-gulose. J. Org. Chem. 77, 7401–7410 (2012). (PMID: 2285343710.1021/jo301240j)
Li, Q., Yuan, F., Zhou, C., Plashkevych, O. & Chattopadhyaya, J. Free-radical ring closure to conformationally locked α-l-Carba-LNAs and synthesis of their oligos: Nuclease stability, target RNA specificity, and elicitation of RNase H. J. Org. Chem. 75, 6122–6140 (2010). (PMID: 2073814710.1021/jo100900v)
Boyd, D. R. et al. Chemoenzymatic synthesis of carbasugars (+)-pericosines A−C from diverse aromatic cis-dihydrodiol precursors. Org. Lett. 12, 2206–2209 (2010). (PMID: 2041195210.1021/ol100525r)
Mehta, G., Mohal, N. & Lakshminath, S. A norbornyl route to cyclohexitols: Structural diversity in fragmentation through functional group switching. Synthesis of α- and β-galactose, α-talose and α-fucopyranose carbasugars. Tetrahedron Lett. 41, 3505–3508 (2000). (PMID: 10.1016/S0040-4039(00)00408-1)
Boyd, D. R. et al. Chemoenzymatic synthesis of carbasugars from iodobenzene. Org. Biomol. Chem. 3, 1953 (2005). (PMID: 1588917910.1039/b502009c)
Leermann, T., Block, O., Podeschwa, M. A. L., Pfüller, U. & Altenbach, H.-J. De novo synthesis and lectin binding studies of unsaturated carba-pyranoses. Org. Biomol. Chem. 8, 3965 (2010). (PMID: 2058930810.1039/c003597a)
Surburg, H. & Loges, A. M. Carvonacetale als Aromastoffe 1–7 (2002).
Birch, A. J. & Mukherji, S. M. 532. Reduction by dissolving metals. Part VI. Some applications in synthesis. J. Chem. Soc. 532, 2531. https://doi.org/10.1039/jr9490002531 (1949). (PMID: 10.1039/jr9490002531)
Nomura, M. et al. Synthesis of physiologically active substances from several cyclic monoterpenyl ketones. J. Jpn. Oil Chem. Soc. 45, 865–870 (1996). (PMID: 10.5650/jos1996.45.865)
Palaniappan, S., Narender, P., Saravanan, C. & Rao, V. J. Polyaniline-supported sulfuric acid salt as a powerful catalyst for the protection and deprotection of carbonyl compounds. Synlett 1793–1796. https://doi.org/10.1055/s-2003-41412 (2003).
Brown, H. C. & Pfaffenberger, C. D. Thexylborane as a convenient reagent for the cyclic hydroboration of dienes. Stereospecific syntheses via cyclic hydroboration. J. Am. Chem. Soc. 89, 5475–5477 (1967). (PMID: 10.1021/ja00997a044)
Schulze, A., Mitterer, F., Pombo, J. P. & Schild, S. Biofilms by bacterial human pathogens: Clinical relevance—Development, composition and regulation—Therapeutical strategies. Microb. Cell 8, 28–56 (2021). (PMID: 33553418784184910.15698/mic2021.02.741)
Ishchuk, O. P., Sterner, O., Ellervik, U. & Manner, S. Simple carbohydrate derivatives diminish the formation of biofilm of the pathogenic yeast Candida albicans. Antibiotics 9, 10 (2019). (PMID: 716792610.3390/antibiotics9010010)
Kolodkin-Gal, I. et al. Amino acids trigger biofilm disassembly. Science 328, 627–629 (2010). (PMID: 20431016292157310.1126/science.1188628)
Valle, J. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. U.S.A. 103, 12558–12563 (2006). (PMID: 16894146156791710.1073/pnas.0605399103)
Liu, Y., Jiang, Y., Zhu, J., Huang, J. & Zhang, H. Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa. Carbohydr. Polym. 206, 412–419 (2019). (PMID: 3055334010.1016/j.carbpol.2018.11.015)
Segev-Zarko, L., Saar-Dover, R., Brumfeld, V., Mangoni, M. L. & Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 468, 259–270 (2015). (PMID: 2576193710.1042/BJ20141251)
Srinivasan, R. et al. Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front. Microbiol. 12, 1–19 (2021). (PMID: 10.3389/fmicb.2021.676458)
Verderosa, A. D., Totsika, M. & Fairfull-Smith, K. E. Bacterial biofilm eradication agents: A current review. Front. Chem. 7, 1–17 (2019). (PMID: 10.3389/fchem.2019.00824)
Ren, W. et al. Revealing the mechanism for covalent inhibition of glycoside hydrolases by carbasugars at an atomic level. Nat. Commun. 9, 3243 (2018). (PMID: 30104598608997410.1038/s41467-018-05702-7)
Boden, S., Reise, F., Kania, J., Lindhorst, T. K. & Hartmann, L. Sequence-defined introduction of hydrophobic motifs and effects in lectin binding of precision glycomacromolecules. Macromol. Biosci. 19, 1–11 (2019). (PMID: 10.1002/mabi.201800425)
Ueda, T., Kaito, C., Omae, Y. & Sekimizu, K. Sugar-responsive gene expression and the agr system are required for colony spreading in Staphylococcus aureus. Microb. Pathogens 51, 178–185 (2011). (PMID: 10.1016/j.micpath.2011.04.003)
Ha, J.-H. et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv. 4, eaar7063 (2018). (PMID: 29868643598391310.1126/sciadv.aar7063)
Tan, L., Li, S. R., Jiang, B., Hu, X. M. & Li, S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front. Microbiol. 9, 55 (2018). (PMID: 29422887578975510.3389/fmicb.2018.00055)
Gatta, R., Wiese, A., Iwanicki, A. & Obuchowski, M. Influence of glucose on swarming and quorum sensing of Dickeya solani. PLoS One 17, e0263124 (2022). (PMID: 35192621886322410.1371/journal.pone.0263124)
Hernández-Jiménez, E. et al. Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer?. Biochem. Biophys. Res. Commun. 441, 947–952 (2013). (PMID: 2423988410.1016/j.bbrc.2013.11.012)
Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C. & Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10, 3 (2020). (PMID: 33374551782248810.3390/antibiotics10010003)
Fillmore, N. et al. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One 10, e0120257 (2015). (PMID: 25768019435899010.1371/journal.pone.0120257)
Giang, A.-H. et al. Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the Warburg effect. J. Biol. Chem. 288, 33303–33311 (2013). (PMID: 24100035382917610.1074/jbc.M113.507129)
Yetkin-Arik, B. et al. The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Sci. Rep. 9, 12608 (2019). (PMID: 31471554671720510.1038/s41598-019-48676-2)
Dalla Valle, A. et al. Induction of stearoyl-CoA 9-desaturase 1 protects human mesenchymal stromal cells against palmitic acid-induced lipotoxicity and inflammation. Front. Endocrinol. (Lausanne) 10, 726 (2019). (PMID: 10.3389/fendo.2019.00726)
Dagher, Z., Ruderman, N., Tornheim, K. & Ido, Y. Acute regulation of fatty acid oxidation and AMP-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 88, 1276–1282 (2001). (PMID: 1142030410.1161/hh1201.092998)
Japan Food Research Laboratories. ISO 22196: Measurement of antibacterial activity on plastics and other non-porous surfaces. ISO 1–24 (2011).
Wang, J., Woo, M. & Yan, C. Spot plating assay for the determination of survival and plating efficiency of Escherichia coli in sub-MIC levels of antibiotics. JEMI Methods 1, 26–29 (2017).
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Carbasugars)
0 (Penicillins)
Y45QSO73OB (Streptomycin)
تواريخ الأحداث: Date Created: 20221027 Date Completed: 20221028 Latest Revision: 20230123
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9606123
DOI: 10.1038/s41598-022-22807-8
PMID: 36289389
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-22807-8