دورية أكاديمية

Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III.

التفاصيل البيبلوغرافية
العنوان: Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III.
المؤلفون: Jacobs RQ; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA., Carter ZI; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA., Lucius AL; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA., Schneider DA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
المصدر: IScience [iScience] 2022 Oct 08; Vol. 25 (11), pp. 105306. Date of Electronic Publication: 2022 Oct 08 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: United States NLM ID: 101724038 Publication Model: eCollection Cited Medium: Internet ISSN: 2589-0042 (Electronic) Linking ISSN: 25890042 NLM ISO Abbreviation: iScience Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Cambridge, MA] : Cell Press, [2018]-
مستخلص: Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Competing Interests: The authors declare no competing interests.
(© 2022 The Author(s).)
References: J Mol Biol. 2004 Jun 11;339(4):751-71. (PMID: 15165848)
Nucleic Acids Res. 2017 Jun 20;45(11):6362-6374. (PMID: 28379497)
Nat Rev Mol Cell Biol. 2021 Jan;22(1):3-21. (PMID: 33208928)
Biophys Chem. 2021 Dec;279:106682. (PMID: 34634538)
J Cell Biol. 1982 Apr;93(1):217-22. (PMID: 7040415)
Nucleic Acids Res. 2011 Nov 1;39(20):8778-91. (PMID: 21768125)
Trends Biochem Sci. 2004 Mar;29(3):127-35. (PMID: 15003270)
J Biol Chem. 2022 Jan;298(1):101450. (PMID: 34838819)
EMBO J. 2003 Sep 15;22(18):4738-47. (PMID: 12970186)
ACS Med Chem Lett. 2012 May 08;3(7):602-6. (PMID: 24900516)
Mol Cell. 2019 Jan 3;73(1):107-118.e4. (PMID: 30503775)
Sci Adv. 2017 Oct 20;3(10):e1701484. (PMID: 29062891)
Genome Res. 2012 Dec;22(12):2399-408. (PMID: 23100115)
EMBO J. 1999 Sep 15;18(18):5042-51. (PMID: 10487756)
Cell Rep. 2013 Sep 12;4(5):974-84. (PMID: 23994471)
Nature. 2012 Mar 25;484(7394):386-9. (PMID: 22446626)
Transcription. 2014;5(3):e28674. (PMID: 25764332)
Biochemistry. 1985 Jul 16;24(15):4010-8. (PMID: 3902078)
Genes Dev. 2019 Aug 1;33(15-16):960-982. (PMID: 31123063)
Genes Dev. 2020 Apr 1;34(7-8):465-488. (PMID: 32238450)
Mol Cell. 2010 Oct 22;40(2):216-27. (PMID: 20965417)
Cells. 2020 Jan 21;9(2):. (PMID: 31973211)
Nucleic Acids Res. 2005 Feb 08;33(3):838-45. (PMID: 15701755)
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):318-30. (PMID: 23099421)
Front Chem. 2020 Apr 21;8:276. (PMID: 32373584)
Biochemistry. 2019 Apr 23;58(16):2116-2124. (PMID: 30912638)
Nature. 2013 Oct 31;502(7473):644-9. (PMID: 24153184)
Cell Cycle. 2008 Jun 1;7(11):1539-44. (PMID: 18469524)
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2946-51. (PMID: 26929337)
Mol Cell. 2005 Mar 18;17(6):831-40. (PMID: 15780939)
Mol Cell. 2015 Jun 18;58(6):1124-32. (PMID: 25959395)
Nucleic Acids Res. 1986 Nov 11;14(21):8331-46. (PMID: 3537956)
J Biol Chem. 2020 Jan 31;295(5):1288-1299. (PMID: 31843971)
Nature. 2015 Sep 10;525(7568):274-7. (PMID: 26331540)
J Mol Biol. 2013 Aug 9;425(15):2795-812. (PMID: 23639359)
Nat Struct Mol Biol. 2004 May;11(5):394-403. (PMID: 15114340)
Science. 2003 Aug 22;301(5636):1094-6. (PMID: 12934007)
Biophys J. 2018 Jun 5;114(11):2507-2515. (PMID: 29874602)
Nat Struct Mol Biol. 2020 Jul;27(7):668-677. (PMID: 32541898)
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):296-305. (PMID: 23041497)
Cell Rep. 2018 Apr 10;23(2):404-414. (PMID: 29642000)
Biochim Biophys Acta. 2013 Jan;1829(1):76-83. (PMID: 22982194)
Chromosoma. 2013 Dec;122(6):487-97. (PMID: 24022641)
Genome Biol. 2003;5(1):R2. (PMID: 14709174)
J Mol Biol. 2001 Jun 29;310(1):1-26. (PMID: 11419933)
Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):295-309. (PMID: 29313808)
Nucleic Acids Res. 2000 Mar 15;28(6):1283-98. (PMID: 10684922)
Nature. 2013 Oct 31;502(7473):650-5. (PMID: 24153182)
Cell. 1978 Mar;13(3):535-49. (PMID: 566162)
Mol Cell Biol. 2008 Jul;28(14):4576-87. (PMID: 18474615)
Mol Cell. 2008 Jun 6;30(5):557-66. (PMID: 18538654)
Mol Biol Evol. 2011 Sep;28(9):2561-75. (PMID: 21444650)
J Biol Chem. 2021 Jan-Jun;296:100051. (PMID: 33168625)
Nat Rev Microbiol. 2011 Feb;9(2):85-98. (PMID: 21233849)
Nature. 1986 Jun 12-18;321(6071):702-6. (PMID: 3520340)
J Cell Biol. 2005 Aug 29;170(5):733-44. (PMID: 16129783)
Cancer Cell. 2014 Jan 13;25(1):77-90. (PMID: 24434211)
Mol Microbiol. 2007 Sep;65(6):1395-404. (PMID: 17697097)
Transcription. 2014;5(1):e27639. (PMID: 25764110)
Cell. 2004 Jan 23;116(2):247-57. (PMID: 14744435)
Nucleic Acids Res. 2001 Jul 1;29(13):2675-90. (PMID: 11433012)
Cell. 1989 Jun 2;57(5):753-61. (PMID: 2720786)
PLoS One. 2010 Sep 27;5(9):e12996. (PMID: 20885994)
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. (PMID: 22493230)
Nat Rev Genet. 2012 Oct;13(10):720-31. (PMID: 22986266)
Biophys J. 2021 Oct 19;120(20):4378-4390. (PMID: 34509510)
EMBO J. 1998 Jul 1;17(13):3692-703. (PMID: 9649439)
J Biol. 2008 Dec 02;7(10):40. (PMID: 19055851)
Proc Natl Acad Sci U S A. 1979 Jan;76(1):410-4. (PMID: 370829)
Genes Dev. 2002 Oct 15;16(20):2593-620. (PMID: 12381659)
EMBO J. 2004 Oct 13;23(20):4051-60. (PMID: 15372072)
Cell Cycle. 2019 Feb;18(4):500-510. (PMID: 30760101)
Science. 1993 Nov 5;262(5135):867-73. (PMID: 8235608)
J Biol. 2008 Dec 02;7(10):39. (PMID: 19090964)
Genes Dev. 2008 May 1;22(9):1190-204. (PMID: 18451108)
Biochim Biophys Acta. 2013 Jan;1829(1):39-54. (PMID: 23022618)
Cell. 2012 Jun 22;149(7):1431-7. (PMID: 22726432)
Genome Res. 2016 Jul;26(7):933-44. (PMID: 27206856)
Nat Cell Biol. 2004 Jul;6(7):642-7. (PMID: 15181450)
Trends Genet. 2007 Dec;23(12):614-22. (PMID: 17977614)
Genes Dev. 2006 Aug 1;20(15):2030-40. (PMID: 16882981)
Gene. 1997 Feb 7;185(2):291-6. (PMID: 9055829)
PLoS Genet. 2014 Sep 18;10(9):e1004532. (PMID: 25232834)
Mol Cell Biol. 2003 Mar;23(5):1558-68. (PMID: 12588976)
Elife. 2013 Sep 24;2:e00971. (PMID: 24066225)
Trends Genet. 2012 Jun;28(6):285-94. (PMID: 22465610)
Trends Biochem Sci. 1999 Nov;24(11):437-40. (PMID: 10542411)
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):283-95. (PMID: 23063749)
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8948-53. (PMID: 22615360)
Trends Genet. 2008 May;24(5):211-5. (PMID: 18384908)
Genomics. 2009 Dec;94(6):388-96. (PMID: 19720141)
Biophys J. 2015 Dec 1;109(11):2382-93. (PMID: 26636949)
Genetics. 2006 Apr;172(4):2201-9. (PMID: 16510790)
Biochemistry. 1991 Jan 15;30(2):511-25. (PMID: 1846298)
Nature. 1969 Oct 18;224(5216):234-7. (PMID: 5344598)
معلومات مُعتمدة: R35 GM140710 United States GM NIGMS NIH HHS; T32 GM008111 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Biochemistry; Evolutionary mechanisms; Molecular genetics
تواريخ الأحداث: Date Created: 20221028 Latest Revision: 20231020
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9593817
DOI: 10.1016/j.isci.2022.105306
PMID: 36304104
قاعدة البيانات: MEDLINE
الوصف
تدمد:2589-0042
DOI:10.1016/j.isci.2022.105306