دورية أكاديمية

In Vitro Characterization of Protein:Nucleic Acid Liquid-Liquid Phase Separation by Microscopy Methods and Nanoparticle Tracking Analysis.

التفاصيل البيبلوغرافية
العنوان: In Vitro Characterization of Protein:Nucleic Acid Liquid-Liquid Phase Separation by Microscopy Methods and Nanoparticle Tracking Analysis.
المؤلفون: do Amaral MJ; Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. marianajamaral@yahoo.com.br., Passos YM; Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Almeida MS; Protein Advanced Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Pinheiro AS; Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Cordeiro Y; Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. yraima@pharma.ufrj.br.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2551, pp. 605-631.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Nucleic Acids* , Aptamers, Nucleotide* , Nanoparticles* , Intrinsically Disordered Proteins*/chemistry, Mice ; Animals ; Microscopy ; Recombinant Proteins
مستخلص: Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.
(© 2023. Springer Science+Business Media, LLC, part of Springer Nature.)
References: Darling AL, Liu Y, Oldfield CJ et al (2018) Intrinsically disordered proteome of human membrane-less organelles. Proteomics 18(5-6):e1700193. https://doi.org/10.1002/pmic.201700193. (PMID: 10.1002/pmic.20170019329068531)
Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732. https://doi.org/10.1126/science.1172046. (PMID: 10.1126/science.117204619460965)
Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191. https://doi.org/10.1016/j.cell.2012.05.022. (PMID: 10.1016/j.cell.2012.05.02222682242)
Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6):420–435. https://doi.org/10.1016/j.tcb.2018.02.004. (PMID: 10.1016/j.tcb.2018.02.004296026976034118)
Fonin AV, Darling AL, Kuznetsova IM et al (2018) Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 75(21):3907–3929. https://doi.org/10.1007/s00018-018-2894-9. (PMID: 10.1007/s00018-018-2894-930066087)
Elbaum-Garfinkle S (2019) Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem 294(18):7160–7168. https://doi.org/10.1074/jbc.REV118.001188. (PMID: 10.1074/jbc.REV118.001188309144806509495)
Nedelsky NB, Taylor JP (2019) Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 15(5):272–286. https://doi.org/10.1038/s41582-019-0157-5. (PMID: 10.1038/s41582-019-0157-530890779)
Matos CO, Passos YM, do Amaral MJ et al (2020) Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer. FASEB J 34(1):365–385. https://doi.org/10.1096/fj.201901897R. (PMID: 10.1096/fj.201901897R31914616)
Allen RD, David GB, Nomarski G (1969) The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk 69(4):193–221. (PMID: 5361069)
Salmon ED, Tran P (1998) High-resolution video-enhanced differential interference contrast (VE-DIC) light microscopy. Methods Cell Biol 56:153–184. https://doi.org/10.1016/s0091-679x(08)60426-4. (PMID: 10.1016/s0091-679x(08)60426-49500138)
Centonze Frohlich V (2008) Phase contrast and differential interference contrast (DIC) microscopy. J Vis Exp 17:844. https://doi.org/10.3791/844. (PMID: 10.3791/844)
Pluta M (1994) Nomarski’s DIC microscopy: a review. In: Phase contrast and differential interference contrast imaging techniques and applications. International Society for Optics and Photonics, pp 10–25. (PMID: 10.1117/12.171873)
Rittscher J, Machiraju R, Wong ST (2008) Microscopic image analysis for life science applications. Artech House.
Gui X, Luo F, Li Y et al (2019) Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun 10(1):2006. https://doi.org/10.1038/s41467-019-09902-7. (PMID: 10.1038/s41467-019-09902-7310435936494871)
do Amaral MJ, Araujo TS, Diaz NC et al (2020) Phase separation and disorder-to-order transition of human brain expressed X-linked 3 (hBEX3) in the presence of small fragments of tRNA. J Mol Biol 432(7):2319–2348. https://doi.org/10.1016/j.jmb.2020.02.030. (PMID: 10.1016/j.jmb.2020.02.03032142787)
Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2. (PMID: 10.1007/s11095-010-0073-2202044712852530)
Purohit HS, Taylor LS (2017) Phase behavior of ritonavir amorphous solid dispersions during hydration and dissolution. Pharm Res 34(12):2842–2861. https://doi.org/10.1007/s11095-017-2265-5. (PMID: 10.1007/s11095-017-2265-528956218)
Saboo S, Mugheirbi NA, Zemlyanov DY et al (2019) Congruent release of drug and polymer: a “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release 298:68–82. https://doi.org/10.1016/j.jconrel.2019.01.039. (PMID: 10.1016/j.jconrel.2019.01.03930731151)
Cordeiro Y, Machado F, Juliano L et al (2001) DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J Biol Chem 276(52):49400–49409. https://doi.org/10.1074/jbc.M106707200. (PMID: 10.1074/jbc.M10670720011604397)
Cordeiro Y, Silva JL (2005) The hypothesis of the catalytic action of nucleic acid on the conversion of prion protein. Protein Pept Lett 12(3):251–255. https://doi.org/10.2174/0929866053587138. (PMID: 10.2174/092986605358713815777274)
Gomes MP, Millen TA, Ferreira PS et al (2008) Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells. J Biol Chem 283(28):19616–19625. https://doi.org/10.1074/jbc.M802102200. (PMID: 10.1074/jbc.M802102200184566542443653)
Kovachev PS, Gomes MPB, Cordeiro Y et al (2019) RNA modulates aggregation of the recombinant mammalian prion protein by direct interaction. Sci Rep 9(1):12406. https://doi.org/10.1038/s41598-019-48883-x. (PMID: 10.1038/s41598-019-48883-x314558086712051)
Lima LM, Cordeiro Y, Tinoco LW et al (2006) Structural insights into the interaction between prion protein and nucleic acid. Biochemistry 45(30):9180–9187. https://doi.org/10.1021/bi060532d. (PMID: 10.1021/bi060532d16866364)
Macedo B, Millen TA, Braga CA et al (2012) Nonspecific prion protein-nucleic acid interactions lead to different aggregates and cytotoxic species. Biochemistry 51(27):5402–5413. https://doi.org/10.1021/bi300440e. (PMID: 10.1021/bi300440e22691027)
Marques AF, Cordeiro Y, Silva JL et al (2009) Enhanced prion protein stability coupled to DNA recognition and milieu acidification. Biophys Chem 141(2-3):135–139. https://doi.org/10.1016/j.bpc.2008.12.011. (PMID: 10.1016/j.bpc.2008.12.01119286300)
Silva JL, Lima LM, Foguel D et al (2008) Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci 33(3):132–140. https://doi.org/10.1016/j.tibs.2007.11.003. (PMID: 10.1016/j.tibs.2007.11.00318243708)
Corbett GT, Wang Z, Hong W et al (2020) PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol 139(3):503–526. https://doi.org/10.1007/s00401-019-02114-9. (PMID: 10.1007/s00401-019-02114-931853635)
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019. (PMID: 10.1038/nmeth.201922743772)
Makarava N, Baskakov IV (2008) Expression and purification of full-length recombinant PrP of high purity. Methods Mol Biol 459:131–143. https://doi.org/10.1007/978-1-59745-234-2_10. (PMID: 10.1007/978-1-59745-234-2_1018576153)
Macedo B, Sant’Anna R, Navarro S et al (2015) Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microb Cell Fact 14:174. https://doi.org/10.1186/s12934-015-0361-y. (PMID: 10.1186/s12934-015-0361-y265368664634817)
Macedo B, Cordeiro Y (2017) Unraveling prion protein interactions with aptamers and other PrP-binding nucleic acids. Int J Mol Sci 18(5):1023. https://doi.org/10.3390/ijms18051023. (PMID: 10.3390/ijms180510235454936)
Köhler A (1894) New method of illumination for photomicrographical purposes. J R Microsc Soc 14:261–262.
Vernon RM, Forman-Kay JD (2019) First-generation predictors of biological protein phase separation. Curr Opin Struct Biol 58:88–96. https://doi.org/10.1016/j.sbi.2019.05.016. (PMID: 10.1016/j.sbi.2019.05.01631252218)
Banerjee PR, Milin AN, Moosa MM et al (2017) Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew Chem Int Ed Engl 56(38):11354–11359. https://doi.org/10.1002/anie.201703191. (PMID: 10.1002/anie.201703191285563825647147)
Kroschwald S, Maharana S, Simon AJM (2017) Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3(5):e201702000010.
Kostylev MA, Tuttle MD, Lee S et al (2018) Liquid and hydrogel phases of PrP(C) linked to conformation shifts and triggered by Alzheimer’s amyloid-beta oligomers. Mol Cell 72(3):426–443 e412. https://doi.org/10.1016/j.molcel.2018.10.009. (PMID: 10.1016/j.molcel.2018.10.009304014306226277)
Voorhees PW (1992) Ostwald ripening of two-phase mixtures. Annu Rev Mater Sci 22(1):197–215. https://doi.org/10.1146/annurev.ms.22.080192.001213. (PMID: 10.1146/annurev.ms.22.080192.001213)
Shin Y, Berry J, Pannucci N et al (2017) Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168(1-2):159–171 e114. https://doi.org/10.1016/j.cell.2016.11.054. (PMID: 10.1016/j.cell.2016.11.05428041848)
Maharana S, Wang J, Papadopoulos DK et al (2018) RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360(6391):918–921. https://doi.org/10.1126/science.aar7366. (PMID: 10.1126/science.aar7366296507026091854)
Wegmann S, Eftekharzadeh B, Tepper K et al (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37(7). https://doi.org/10.15252/embj.201798049.
Sugimoto S, Arita-Morioka K, Mizunoe Y et al (2015) Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels. Nucleic Acids Res 43(14):e92. https://doi.org/10.1093/nar/gkv338. (PMID: 10.1093/nar/gkv338258831454538803)
فهرسة مساهمة: Keywords: Amyloid fibrils; Biomolecular condensates; Coacervation; DNA aptamers; Differential interference contrast (DIC) microscopy; Fluorescence microscopy; Liquid-liquid phase separation (LLPS); Nanoparticle tracking analysis (NTA); Phase transitions; Prion protein (PrP); Transmission electron microscopy (TEM)
المشرفين على المادة: 0 (Nucleic Acids)
0 (Aptamers, Nucleotide)
0 (Recombinant Proteins)
0 (Intrinsically Disordered Proteins)
تواريخ الأحداث: Date Created: 20221031 Date Completed: 20221101 Latest Revision: 20221107
رمز التحديث: 20221213
DOI: 10.1007/978-1-0716-2597-2_37
PMID: 36310228
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-2597-2_37