دورية أكاديمية

Homo- and heterofermentative lactobacilli are distinctly affected by furanic compounds.

التفاصيل البيبلوغرافية
العنوان: Homo- and heterofermentative lactobacilli are distinctly affected by furanic compounds.
المؤلفون: Giacon TG; Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil., de Gois E Cunha GC; Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil., Eliodório KP; Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil., Oliveira RPS; Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil., Basso TO; Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil. thiagobasso@usp.br.
المصدر: Biotechnology letters [Biotechnol Lett] 2022 Dec; Vol. 44 (12), pp. 1431-1445. Date of Electronic Publication: 2022 Nov 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8008051 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6776 (Electronic) Linking ISSN: 01415492 NLM ISO Abbreviation: Biotechnol Lett Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: [Kew, Eng., Science and Technology Letters]
مواضيع طبية MeSH: Lactobacillus*/metabolism , Furaldehyde*/pharmacology , Furaldehyde*/metabolism, Fermentation ; Biomass ; Ethanol/metabolism
مستخلص: Purpose: Second generation (2G) ethanol is produced using lignocellulosic biomass. However, the pre-treatment processes generate a variety of molecules (furanic compounds, phenolic compounds, and organic acids) that act as inhibitors of microbial metabolism, and thus, reduce the efficiency of the fermentation step in this process. In this context, the present study aimed to investigate the effect of furanic compounds on the physiology of lactic acid bacteria (LAB) strains that are potential contaminants in ethanol production.
Methodology: Homofermentative and heterofermentative strains of laboratory LAB, and isolated from first generation ethanol fermentation, were used. LAB strains were challenged to grow in the presence of furfural and 5-hydroxymethyl furfural (HMF).
Results: We determined that the effect of HMF and furfural on the growth rate of LAB is dependent on the metabolic type, and the growth kinetics in the presence of these compounds is enhanced for heterofermentative LAB, whereas they are inhibitory to homofermentative LAB. Sugar consumption and product formation were also enhanced in the presence of furanic compounds for heterofermentative LAB, who displayed effective depletion kinetics when compared to the homofermentative LAB.
Conclusion: Homo- and heterofermentative LAB are affected differently by furanic compounds, in a way that the latter type is more resistant to the toxic effects of these inhibitors. This knowledge is important to understand the potential effects of bacterial contamination in 2G bioprocesses.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653.
Albers E, Johansson E, Franzén CJ, Larsson C (2011) Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels 4(1):1–8.
Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 82(4):340–349.
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. (PMID: 20042329)
Amorim HV, Lopes ML, de Castro Oliveira JV et al. (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91, 1267–1275. https://doi.org/10.1007/s00253-011-3437-6.
Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC (2014) Homo-and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105(1):169–177. (PMID: 24198118)
Blomberg A., & Adler L (1992). Physiology of osmotolerance in fungi. Adv. Microb. Physiol 33, 145–212.
Bonatelli ML, Quecine MC, Silva MS, Labate CA (2017) Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol. Lett. 364(17). https://doi.org/10.1093/femsle/fnx159.
Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841.
Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol 11(3):147–150.
Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Biores Technol 101(13):4754–4766.
Carvalho LM, Carvalho-Netto OV, Calderón LL, Gutierrez M, De Assis MA, Mofatto LS et al (2021) Understanding the differences in 2G ethanol fermentative scales through omics data integration. FEMS Yeast Res 21(4):foab030. (PMID: 33983370)
Chandel AK, Da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. BioEnergy Res 6(1):388–401.
Cola P, Procópio DP, de Castro Alves AT, Carnevalli LR, Sampaio IV, da Costa BLV, Basso TO (2020) Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria. Biotech Lett 42(4):571–582.
Collograi KC, da Costa AC, Ienczak JL (2019) Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum. Appl Microbiol Biotechnol 103(12):5039–5050. (PMID: 30989252)
Cogan TM, Jordan KN (1994) Metabolism of Leuconostoc bacteria. J Dairy Sci 77(9):2704–2717.
De Man JC, Rogosa D, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135.
Dunlop AP (1948) Furfural formation and behavior. Ind Eng Chem 40(2):204–209.
Fan LT, Lee YH, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Microbial reactions. Springer, Berlin, Heidelberg, pp 157–187.
Franden MA, Pienkos PT, Zhang M (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J Biotechnol 144(4):259–267. (PMID: 19683550)
Gänzle MG (2015) Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2:106–117.
Gutiérrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Biotechnology for fuels and chemicals. Humana Press, Totowa, NJ, pp 327–340.
Guo ZP, Zhang L, Ding ZY, Shi GY (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab. Eng, 13(1), 49–59. https://doi.org/10.1016/j.ymben.2010.11.003.
Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75(24):7631–7638. (PMID: 198549182794096)
Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D et al (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6(1):364. (PMID: 204610712890322)
Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224. (PMID: 6354079)
Kandler, O., & Weiss, N. (1986). Genus Lactobacillus In: Sneath PHA, Mair NS, Sharpe ME, Holt JG, (eds). Bergey’s manual of systematic bacteriology. 4:1209–1234.
Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. (PMID: 15300416)
Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24(3–4):151–159.
Lino FSO, Bajic D, Vila JCC, Sánchez A, Sommer MOA (2021) Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun, 12(1):1–12. https://doi.org/10.1038/s41467-021-21844-7.
Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90(3):809–825. (PMID: 21380517)
Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bi-shydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31(8):345–352. https://doi.org/10.1007/s10295-004-0148-3.
Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282(3):233–244. (PMID: 195171363025311)
Longhi DA, Dalcanton F, Aragão GMFD, Carciofi BAM, Laurindo JB (2017) Microbial growth models: a general mathematical approach to obtain μ max and λ parameters from sigmoidal empirical primary models. Braz J Chem Eng 34(2):369–375.
Lucena BT, dos Santos BM, Moreira JL et al (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10, 298 https://doi.org/10.1186/1471-2180-10-298.
Maicas S, Ferrer S, Pardo I (2002) NAD (P) H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology 148(1):325–332. (PMID: 11782525)
Meikle AJ, Reed RH, Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. Microbiology 134(11):3049–3060.
Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93.
Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol 31(1):20–31. (PMID: 20513164)
Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845. (PMID: 18704079)
Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE (2007) Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 98(15):2942–2948. https://doi.org/10.1016/j.biortech.2006.10.002.
Taherzadeh MJ, Karimi K (2011) Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. Biofuels. Academic Press, Cambridge, pp 287–311.
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87(2):169–174. (PMID: 16232445)
Tjørve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30(6):827–835.
van Dijken JP, Scheffers WA (1986) Redox Balances in the Metabolism of Sugars by Yeast. FEMS Microbiol. Rev 32:199–224. https://doi.org/10.1111/j.1574-6968.1986.tb01194.x.
van der Pol EC, Bakker RR, Baets P, Eggink G (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio) chemicals and fuels. Appl Microbiol Biotechnol 98(23):9579–9593. (PMID: 25370992)
Van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA et al (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418. (PMID: 17033882)
Vanmarcke G, Demeke MM, Foulquié-Moreno MR, Thevelein JM (2021) Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnol Biofuels 14(1):1–15.
Van Niel EW, Larsson CU, Lohmeier-Vogel EM, Rådström P (2012) The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Int J Food Microbiol 152(3):206–210. (PMID: 22071286)
Vertès AA, Qureshi N, Yukawa H, Blaschek HP (eds) (2011) Biomass to biofuels: strategies for global industries. Wiley, Hoboken.
Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78(2):172–178. (PMID: 11870608)
Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92(6):1095–1105. (PMID: 220314653223595)
Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33. (PMID: 10440668)
معلومات مُعتمدة: 2019/13826-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/17172-2 Fundação de Amparo à Pesquisa do Estado de São Paulo; 140744/2021-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: 2G ethanol; Biofuels; Fermentation; Lactic acid bacteria; Lignocellulosic inhibitors; Yeast
المشرفين على المادة: DJ1HGI319P (Furaldehyde)
3K9958V90M (Ethanol)
تواريخ الأحداث: Date Created: 20221101 Date Completed: 20221122 Latest Revision: 20221122
رمز التحديث: 20221213
DOI: 10.1007/s10529-022-03310-6
PMID: 36316512
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6776
DOI:10.1007/s10529-022-03310-6