دورية أكاديمية

Toward quantitative metabarcoding.

التفاصيل البيبلوغرافية
العنوان: Toward quantitative metabarcoding.
المؤلفون: Shelton AO; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA., Gold ZJ; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.; CICOES, University of Washington and Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, USA., Jensen AJ; CICOES, University of Washington and Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, USA.; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA., D Agnese E; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA., Andruszkiewicz Allan E; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA., Van Cise A; North Gulf Oceanic Society, Visiting Scientist at Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA., Gallego R; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA.; Departamento de Biologia, Universidad Autonoma de Madrid, Unidad de Genetica, Madrid, Spain., Ramón-Laca A; CICOES, University of Washington and Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, USA.; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA., Garber-Yonts M; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA., Parsons K; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA., Kelly RP; School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA.
المصدر: Ecology [Ecology] 2023 Feb; Vol. 104 (2), pp. e3906. Date of Electronic Publication: 2022 Dec 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 0043541 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-9170 (Electronic) Linking ISSN: 00129658 NLM ISO Abbreviation: Ecology Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
مواضيع طبية MeSH: DNA Barcoding, Taxonomic*/methods , Microbiota*, DNA/genetics ; Ecology ; Biodiversity
مستخلص: Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.
(© 2022 The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
References: Adams, R. I., M. Miletto, J. W. Taylor, and T. D. Bruns. 2013. “Dispersal in Microbes: Fungi in Indoor Air Are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances.” The ISME Journal 7: 1262-73.
Aitchison, J. 1982. “The Statistical Analysis of Compositional Data.” Journal of the Royal Statistical Society: Series B: Methodological 44: 139-60.
Aitchison, J. 1986. The Statistical Analysis of Compositional Data. London: Chapman & Hall Ltd.
Andersen, K., K. L. Bird, M. Rasmussen, J. Haile, H. Breuning-Madsen, K. H. Kjaer, L. Orlando, M. T. P. Gilbert, and E. Willerslev. 2012. “Meta-Barcoding of ‘dirt'DNA from Soil Reflects Vertebrate Biodiversity.” Molecular Ecology 21: 1966-79.
Ando, H., H. Mukai, T. Komura, T. Dewi, M. Ando, and Y. Isagi. 2020. “Methodological Trends and Perspectives of Animal Dietary Studies by Noninvasive Fecal DNA Metabarcoding.” Environmental DNA 2: 391-406.
Andruszkiewicz, E. A., H. A. Starks, F. P. Chavez, L. M. Sassoubre, B. A. Block, and A. B. Boehm. 2017. “Biomonitoring of Marine Vertebrates in Monterey Bay Using eDNA Metabarcoding.” PLoS One 12: e0176343.
Barnes, M. A., and C. R. Turner. 2016. “The Ecology of Environmental DNA and Implications for Conservation Genetics.” Conservation Genetics 17: 1-17.
Beng, K. C., and R. T. Corlett. 2020. “Applications of Environmental DNA (eDNA) in Ecology and Conservation: Opportunities, Challenges and Prospects.” Biodiversity and Conservation 29: 2089-121.
Carøe, C., and K. Bohmann. 2020. “Tagsteady: A Metabarcoding Library Preparation Protocol to Avoid False Assignment of Sequences to Samples.” Molecular Ecology Resources 20: 1620-31.
Coghlan, S. A., C. A. Currier, J. Freeland, T. J. Morris, and C. C. Wilson. 2021. “Community eDNA Metabarcoding as a Detection Tool for Documenting Freshwater Mussel (Unionidae) Species Assemblages.” Environmental DNA 3: 1172-91.
Costello, M., M. Fleharty, J. Abreu, Y. Farjoun, S. Ferriera, L. Holmes, B. Granger, et al. 2018. “Characterization and Remediation of Sample Index Swaps by Non-redundant Dual Indexing on Massively Parallel Sequencing Platforms.” BMC Genomics 19: 332.
Creer, S., K. Deiner, S. Frey, D. Porazinska, P. Taberlet, W. K. Thomas, C. Potter, and H. M. Bik. 2016. “The Ecologist's Field Guide to Sequence-Based Identification of Biodiversity.” Methods in Ecology and Evolution 7: 1008-18.
De Filippis, F., M. Laiola, G. Blaiotta, and D. Ercolini. 2017. “Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity.” Applied and Environmental Microbiology 83: e00905-17.
Deagle, B. E., A. Chiaradia, J. McInnes, and S. N. Jarman. 2010. “Pyrosequencing Faecal DNA to Determine Diet of Little Penguins: Is What Goes in What Comes Out?” Conservation Genetics 11: 2039-48.
Deagle, B. E., A. C. Thomas, A. K. Shaffer, A. W. Trites, and S. N. Jarman. 2013. “Quantifying Sequence Proportions in a DNA-Based Diet Study Using Ion Torrent Amplicon Sequencing: Which Counts Count?” Molecular Ecology Resources 13: 620-33.
Egozcue, J. J., J. Graffelman, M. I. Ortego, and V. Pawlowsky-Glahn. 2020. “Some Thoughts on Counts in Sequencing Studies.” NAR Genomics and Bioinformatics 2: lqaa094.
Erb, I., G. B. Gloor, and T. P. Quinn. 2020. “Compositional Data Analysis and Related Methods Applied to Genomics-A First Special Issue from NAR Genomics and Bioinformatics.” NAR Genomics and Bioinformatics 2: lqaa103.
Everett, M. V., and L. K. Park. 2018. “Exploring Deep-Water Coral Communities Using Environmental DNA.” Deep Sea Research Part II: Topical Studies in Oceanography 150: 229-41.
Fernández, S., S. Rodríguez, J. L. Martínez, Y. J. Borrell, A. Ardura, and E. García-Vázquez. 2018. “Evaluating Freshwater Macroinvertebrates from eDNA Metabarcoding: A River Nalón Case Study.” PLoS One 13: e0201741.
Ficetola, G. F., C. Miaud, F. Pompanon, and P. Taberlet. 2008. “Species Detection Using Environmental DNA from Water Samples.” Biology Letters 4: 423-5.
Ford, M. J., J. Hempelmann, M. B. Hanson, K. L. Ayres, R. W. Baird, C. K. Emmons, J. I. Lundin, G. S. Schorr, S. K. Wasser, and L. K. Park. 2016. “Estimation of a Killer Whale (Orcinus orca) Population's Diet Using Sequencing Analysis of DNA from Feces.” PLoS One 11: e0144956.
Fukaya, K., H. Murakami, S. Yoon, K. Minami, Y. Osada, S. Yamamoto, R. Masuda, et al. 2021. “Estimating Fish Population Abundance by Integrating Quantitative Data on Environmental DNA and Hydrodynamic Modelling.” Molecular Ecology 30: 3057-67.
Gloor, G. B., J. M. Macklaim, V. Pawlowsky-Glahn, and J. J. Egozcue. 2017. “Microbiome Datasets Are Compositional: And this Is Not Optional.” Frontiers in Microbiology 8: 2224.
Gohl, D. M., P. Vangay, J. Garbe, A. MacLean, A. Hauge, A. Becker, T. J. Gould, et al. 2016. “Systematic Improvement of Amplicon Marker Gene Methods for Increased Accuracy in Microbiome Studies.” Nature Biotechnology 34: 942-9.
Gold, Z., R. P. Kelly, A. O. Shelton, A. Thompson, K. D. Goodwin, R. Gallego, K. Parsons, L. R. Thompson, D. Kacev, and P. H. Barber. 2022. “Message in a Bottle: Archived DNA Reveals Impacts of a Marine Heatwave on Fish Assemblages over Multiple Decades.” Science Advances bioRxiv 2022.07.27.501788. https://doi.org/10.1101/2022.07.27.501788.
Hänfling, B., L. Lawson Handley, D. S. Read, C. Hahn, J. Li, P. Nichols, R. C. Blackman, A. Oliver, and I. J. Winfield. 2016. “Environmental DNA Metabarcoding of Lake Fish Communities Reflects Long-Term Data from Established Survey Methods.” Molecular Ecology 25: 3101-19.
Hanson, M. B., C. K. Emmons, M. J. Ford, M. Everett, K. Parsons, L. K. Park, J. Hempelmann, et al. 2021. “Endangered Predators and Endangered Prey: Seasonal Diet of Southern Resident Killer Whales.” PLoS One 16: e0247031.
Hoshino, T., and F. Inagaki. 2017. “Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16 S rRNA Genes.” PLoS One 12: e0169431.
Hoshino, T., R. Nakao, H. Doi, and T. Minamoto. 2021. “Simultaneous Absolute Quantification and Sequencing of Fish Environmental DNA in a Mesocosm by Quantitative Sequencing Technique.” Scientific Reports 11: 1-9.
Jerde, C. L., W. L. Chadderton, A. R. Mahon, M. A. Renshaw, J. Corush, M. L. Budny, S. Mysorekar, and D. M. Lodge. 2013. “Detection of Asian Carp DNA as Part of a Great Lakes Basin-Wide Surveillance Program.” Canadian Journal of Fisheries and Aquatic Sciences 70: 522-6.
Kelly, R. P., A. O. Shelton, and R. Gallego. 2019. “Understanding PCR Processes to Draw Meaningful Conclusions from Environmental DNA Studies.” Scientific Reports 9: 1-14.
Krehenwinkel, H., M. Wolf, J. Y. Lim, A. J. Rominger, W. B. Simison, and R. G. Gillespie. 2017. “Estimating and Mitigating Amplification Bias in Qualitative and Quantitative Arthropod Metabarcoding.” Scientific Reports 7: 1-12.
Lamb, P. D., E. Hunter, J. K. Pinnegar, S. Creer, R. G. Davies, and M. I. Taylor. 2019. “How Quantitative Is Metabarcoding: A Meta-Analytical Approach.” Molecular Ecology 28: 420-30.
Laporte, M., E. Reny-Nolin, V. Chouinard, C. Hernandez, E. Normandeau, B. Bougas, C. Côté, S. Behmel, and L. Bernatchez. 2021. “Proper Environmental DNA Metabarcoding Data Transformation Reveals Temporal Stability of Fish Communities in a Dendritic River System.” Environmental DNA 3: 1007-22.
Leonard, J. A., O. Shanks, M. Hofreiter, E. Kreuz, L. Hodges, W. Ream, R. K. Wayne, and R. C. Fleischer. 2007. “Animal DNA in PCR Reagents Plagues Ancient DNA Research.” Journal of Archaeological Science 34: 1361-6.
Lopes, C. M., T. Sasso, A. Valentini, T. Dejean, M. Martins, K. R. Zamudio, and C. F. Haddad. 2017. “eDNA Metabarcoding: A Promising Method for Anuran Surveys in Highly Diverse Tropical Forests.” Molecular Ecology Resources 17: 904-14.
Lynggaard, C., M. F. Bertelsen, C. V. Jensen, M. S. Johnson, T. G. Frøslev, M. T. Olsen, and K. Bohmann. 2022. “Airborne Environmental DNA for Terrestrial Vertebrate Community Monitoring.” Current Biology 32: 701-7, e5.
Macé, B., R. Hocdé, V. Marques, P.-E. Guerin, A. Valentini, V. Arnal, L. Pellissier, and S. Manel. 2022. “Evaluating Bioinformatics Pipelines for Population-Level Inference Using Environmental DNA.” Environmental DNA 4: 674-86.
McLaren, M. R., A. D. Willis, and B. J. Callahan. 2019. “Consistent and Correctable Bias in Metagenomic Sequencing Experiments.” eLife 8: e46923.
Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Poulsen, K. Sato, T. Minamoto, et al. 2015. “MiFish, a Set of Universal PCR Primers for Metabarcoding Environmental DNA from Fishes: Detection of More than 230 Subtropical Marine Species.” Royal Society Open Science 2: 150088.
Palmer, J. M., M. A. Jusino, M. T. Banik, and D. L. Lindner. 2018. “Non-biological Synthetic Spike-in Controls and the AMPtk Software Pipeline Improve Mycobiome Data.” PeerJ 6: e4925.
Pawlowsky-Glahn, V., and J. J. Egozcue. 2016. “Spatial Analysis of Compositional Data: A Historical Review.” Journal of Geochemical Exploration 164: 28-32.
Piñol, J., G. Mir, P. Gomez-Polo, and N. Agustí. 2015. “Universal and Blocking Primer Mismatches Limit the Use of High-Throughput DNA Sequencing for the Quantitative Metabarcoding of Arthropods.” Molecular Ecology Resources 15: 819-30.
Pompanon, F., B. E. Deagle, W. O. Symondson, D. S. Brown, S. N. Jarman, and P. Taberlet. 2012. “Who Is Eating What: Diet Assessment Using Next Generation Sequencing.” Molecular Ecology 21: 1931-50.
Port, J. A., J. L. O'Donnell, O. C. Romero-Maraccini, P. R. Leary, S. Y. Litvin, K. J. Nickols, K. M. Yamahara, and R. P. Kelly. 2016. “Assessing Vertebrate Biodiversity in a Kelp Forest Ecosystem Using Environmental DNA.” Molecular Ecology 25: 527-41.
Rivera, S. F., F. Rimet, V. Vasselon, M. Vautier, I. Domaizon, and A. Bouchez. 2021. “Fish eDNA Metabarcoding from Aquatic Biofilm Samples: Methodological Aspects.” Molecular Ecology Resources 22: 1440-53.
Schnell, I. B., K. Bohmann, and M. T. P. Gilbert. 2015. “Tag Jumps Illuminated-Reducing Sequence-to-Sample Misidentifications in Metabarcoding Studies.” Molecular Ecology Resources 15: 1289-303.
Shelton, A. O., Z. J. Gold, A. J. Jensen, E. D'Agnese, E. A. Allan, A. Van Cise, R. Gallego, et al. 2022. “Code and Data for ‘Toward Quantitative Metabarcoding’.” Zenodo, Dataset. https://doi.org/10.5281/zenodo.7158929.
Shelton, A. O., J. L. O'Donnell, J. F. Samhouri, N. Lowell, G. D. Williams, and R. P. Kelly. 2016. “A Framework for Inferring Biological Communities from Environmental DNA.” Ecological Applications 26: 1645-59.
Shelton, A. O., A. Ramón-Laca, A. Wells, J. Clemons, D. Chu, B. E. Feist, R. P. Kelly, et al. 2022. “Environmental DNA Provides Quantitative Estimates of Pacific Hake Abundance and Distribution in the Open Ocean.” Proceedings of the Royal Society B 289: 20212613.
Silverman, J. D., R. J. Bloom, S. Jiang, H. K. Durand, E. Dallow, S. Mukherjee, and L. A. David. 2021. “Measuring and Mitigating PCR Bias in Microbiota Datasets.” PLoS Computational Biology 17: e1009113.
Silverman, J. D., K. Roche, S. Mukherjee, and L. A. David. 2020. “Naught all Zeros in Sequence Count Data Are the Same.” Computational and Structural Biotechnology Journal 18: 2789-98.
Taberlet, P., A. Bonin, L. Zinger, and E. Coissac. 2018. Environmental DNA: For Biodiversity Research and Monitoring. New York: Oxford University Press.
Taberlet, P., E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev. 2012. “Towards Next-Generation Biodiversity Assessment Using DNA Metabarcoding.” Molecular Ecology 21: 2045-50.
Thomas, A. C., B. E. Deagle, J. P. Eveson, C. H. Harsch, and A. W. Trites. 2016. “Quantitative DNA Metabarcoding: Improved Estimates of Species Proportional Biomass Using Correction Factors Derived from Control Material.” Molecular Ecology Resources 16: 714-26.
Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Møller, M. Rasmussen, and E. Willerslev. 2012. “Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples.” PLoS One 7: e41732.
Tournayre, O., M. Leuchtmann, O. Filippi-Codaccioni, M. Trillat, S. Piry, D. Pontier, N. Charbonnel, and M. Galan. 2020. “In Silico and Empirical Evaluation of Twelve Metabarcoding Primer Sets for Insectivorous Diet Analyses.” Ecology and Evolution 10: 6310-32.
فهرسة مساهمة: Keywords: amplicon sequencing; bias adjustment; community structure; compositional analysis; diet analysis; environmental DNA
المشرفين على المادة: 9007-49-2 (DNA)
تواريخ الأحداث: Date Created: 20221102 Date Completed: 20230202 Latest Revision: 20230228
رمز التحديث: 20240628
DOI: 10.1002/ecy.3906
PMID: 36320096
قاعدة البيانات: MEDLINE
الوصف
تدمد:1939-9170
DOI:10.1002/ecy.3906