دورية أكاديمية

Histone H2B.8 compacts flowering plant sperm through chromatin phase separation.

التفاصيل البيبلوغرافية
العنوان: Histone H2B.8 compacts flowering plant sperm through chromatin phase separation.
المؤلفون: Buttress T; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK., He S; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK., Wang L; Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.; Institute of Biophysics, Chinese Academy of Science, Beijing, China., Zhou S; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK., Saalbach G; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK., Vickers M; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK., Li G; Institute of Biophysics, Chinese Academy of Science, Beijing, China., Li P; Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China. pilongli@mail.tsinghua.edu.cn., Feng X; Cell and Developmental Biology Department, John Innes Centre, Norwich, UK. xiaoqi.feng@jic.ac.uk.
المصدر: Nature [Nature] 2022 Nov; Vol. 611 (7936), pp. 614-622. Date of Electronic Publication: 2022 Nov 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Arabidopsis*/cytology , Arabidopsis*/genetics , Arabidopsis*/metabolism , Chromatin*/chemistry , Chromatin*/genetics , Chromatin*/metabolism , Histones*/classification , Histones*/genetics , Histones*/metabolism , Pollen*/cytology , Pollen*/genetics , Pollen*/metabolism , Cell Size*, Protamines ; Gene Expression Regulation, Plant ; AT Rich Sequence ; Cell Nucleus/genetics ; Mutation ; Cell Nucleus Size ; Phase Transition ; Transcription, Genetic
مستخلص: Sperm chromatin is typically transformed by protamines into a compact and transcriptionally inactive state 1,2 . Sperm cells of flowering plants lack protamines, yet they have small, transcriptionally active nuclei with chromatin condensed through an unknown mechanism 3,4 . Here we show that a histone variant, H2B.8, mediates sperm chromatin and nuclear condensation in Arabidopsis thaliana. Loss of H2B.8 causes enlarged sperm nuclei with dispersed chromatin, whereas ectopic expression in somatic cells produces smaller nuclei with aggregated chromatin. This result demonstrates that H2B.8 is sufficient for chromatin condensation. H2B.8 aggregates transcriptionally inactive AT-rich chromatin into phase-separated condensates, which facilitates nuclear compaction without reducing transcription. Reciprocal crosses show that mutation of h2b.8 reduces male transmission, which suggests that H2B.8-mediated sperm compaction is important for fertility. Altogether, our results reveal a new mechanism of nuclear compaction through global aggregation of unexpressed chromatin. We propose that H2B.8 is an evolutionary innovation of flowering plants that achieves nuclear condensation compatible with active transcription.
(© 2022. The Author(s).)
References: Steger, K. & Balhorn, R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat. Histol. Embryol. 47, 273–279 (2018). (PMID: 2979735410.1111/ahe.12361)
Rathke, C., Baarends, W. M., Awe, S. & Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta 1839, 155–168 (2014). (PMID: 2409109010.1016/j.bbagrm.2013.08.004)
Twell, D. Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod. 24, 149–160 (2011). (PMID: 2110399610.1007/s00497-010-0157-5)
Russell, S. D. & Jones, D. S. The male germline of angiosperms: repertoire of an inconspicuous but important cell lineage. Front. Plant Sci. 6, 173 (2015). (PMID: 25852722436716510.3389/fpls.2015.00173)
Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009). (PMID: 19525931285806410.1038/nature08162)
Gouraud, A. et al. “Breaking news” from spermatids. Basic Clin. Androl. 23, 11 (2013). (PMID: 25780573434947410.1186/2051-4190-23-11)
Marcon, L. & Boissonneault, G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol. Reprod. 70, 910–918 (2004). (PMID: 1464510510.1095/biolreprod.103.022541)
Miller, D., Brinkworth, M. & Iles, D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301 (2010). (PMID: 1975917410.1530/REP-09-0281)
Ausio, J., Eirin-Lopez, J. M. & Frehlick, L. J. Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. Soc. Reprod. Fertil. Suppl. 65, 63–79 (2007). (PMID: 17644955)
Hackenberg, D. & Twell, D. The evolution and patterning of male gametophyte development. Curr. Top. Dev. Biol. 131, 257–298 (2019). (PMID: 3061262010.1016/bs.ctdb.2018.10.008)
Southworth, D. & Cresti, M. Comparison of flagellated and nonflagellated sperm in plants. Am. J. Bot. 84, 1301–1311 (1997). (PMID: 2170868710.2307/2446056)
Reynolds, W. F. & Wolfe, S. L. Changes in basic proteins during sperm maturation in a plant, Marchantia polymorpha. Exp. Cell Res. 116, 269–273 (1978). (PMID: 71052610.1016/0014-4827(78)90448-2)
Reynolds, W. F. & Wolfe, S. L. Protamines in plant sperm. Exp. Cell Res. 152, 443–448 (1984). (PMID: 672379810.1016/0014-4827(84)90645-1)
Renzaglia, K. S. & Garbary, D. J. Motile gametes of land plants: diversity, development, and evolution. Crit. Rev. Plant Sci. 20, 107–213 (2010). (PMID: 10.1080/20013591099209)
Johnson, M. A., Harper, J. F. & Palanivelu, R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70, 809–837 (2019). (PMID: 3082211210.1146/annurev-arplant-050718-100133)
Schoft, V. K. et al. Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep. 10, 1015–1021 (2009). (PMID: 19680290275006210.1038/embor.2009.152)
Merai, Z. et al. The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes. Proc. Natl Acad. Sci. USA 111, 16166–16171 (2014). (PMID: 25344531423460010.1073/pnas.1418564111)
He, S., Vickers, M., Zhang, J. & Feng, X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 8, e42530 (2019). (PMID: 31135340659475210.7554/eLife.42530)
Borg, M. & Berger, F. Chromatin remodelling during male gametophyte development. Plant J. 83, 177–188 (2015). (PMID: 2589218210.1111/tpj.12856)
Baroux, C., Raissig, M. T. & Grossniklaus, U. Epigenetic regulation and reprogramming during gamete formation in plants. Curr. Opin. Genet. Dev. 21, 124–133 (2011). (PMID: 2132467210.1016/j.gde.2011.01.017)
Feng, W. & Michaels, S. D. Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. Annu. Rev. Genet. 49, 439–459 (2015). (PMID: 2663151410.1146/annurev-genet-112414-055048)
Jiang, D. et al. The evolution and functional divergence of the histone H2B family in plants. PLoS Genet. 16, e1008964 (2020). (PMID: 32716939741033610.1371/journal.pgen.1008964)
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). (PMID: 28225081743422110.1038/nrm.2017.7)
Uversky, V. N. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44, 18–30 (2017). (PMID: 2783852510.1016/j.sbi.2016.10.015)
Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017). (PMID: 28636604560620810.1038/nature22822)
Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017). (PMID: 28636597602274210.1038/nature22989)
Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 (2019). (PMID: 31543265677804110.1016/j.cell.2019.08.037)
Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784 (2020). (PMID: 3332674710.1016/j.cell.2020.11.027)
Borcherds, W., Bremer, A., Borgia, M. B. & Mittag, T. How do intrinsically disordered protein regions encode a driving force for liquid–liquid phase separation? Curr. Opin. Struct. Biol. 67, 41–50 (2021). (PMID: 3306900710.1016/j.sbi.2020.09.004)
Fuchs, G. & Oren, M. Writing and reading H2B monoubiquitylation. Biochim. Biophys. Acta 1839, 694–701 (2014). (PMID: 2441285410.1016/j.bbagrm.2014.01.002)
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018). (PMID: 29961577606376010.1016/j.cell.2018.06.006)
Sequeira-Mendes, J. et al. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26, 2351–2366 (2014). (PMID: 24934173411493810.1105/tpc.114.124578)
Bhaskara, G. B., Nguyen, T. T. & Verslues, P. E. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol. 160, 379–395 (2012). (PMID: 22829320344021210.1104/pp.112.202408)
Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659 (2019). (PMID: 3154342210.1016/j.molcel.2019.08.019)
Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013). (PMID: 23657480387483510.1038/nrg3454)
Sun, L. et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11, 1886 (2020). (PMID: 32312999717088110.1038/s41467-020-15809-5)
Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014). (PMID: 2513217610.1016/j.molcel.2014.07.009)
Moissiard, G. et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336, 1448–1451 (2012). (PMID: 22555433337621210.1126/science.1221472)
Feng, S. H. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014). (PMID: 25132175434790310.1016/j.molcel.2014.07.008)
Wang, C. M. et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25, 246–256 (2015). (PMID: 25367294431529810.1101/gr.170332.113)
Grewal, S. I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007). (PMID: 1717305610.1038/nrg2008)
Castel, B., Tomlinson, L., Locci, F., Yang, Y. & Jones, J. D. G. Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS ONE 14, e0204778 (2019). (PMID: 30625150632641810.1371/journal.pone.0204778)
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, 171–174 (2019). (PMID: 10.1093/nar/gkz365)
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998). (PMID: 1006907910.1046/j.1365-313x.1998.00343.x)
Borges, F. et al. FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8, 44 (2012). (PMID: 23075219350244310.1186/1746-4811-8-44)
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). (PMID: 2780931610.1038/nprot.2016.136)
Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001). (PMID: 1109325910.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3)
The R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). (PMID: 10.21105/joss.01686)
Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, 1178–1186 (2012). (PMID: 10.1093/nar/gkr944)
Sundell, D. et al. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol. 208, 1149–1156 (2015). (PMID: 2619209110.1111/nph.13557)
Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020). (PMID: 3185306910.1038/s41586-019-1852-5)
Chen, J. et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat. Plants 5, 18–25 (2019). (PMID: 3055941710.1038/s41477-018-0323-6)
Chaw, S. M. et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 5, 63–73 (2019). (PMID: 30626928678488310.1038/s41477-018-0337-0)
UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, 506–515 (2019). (PMID: 10.1093/nar/gky1049)
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). (PMID: 29722887596755310.1093/molbev/msy096)
Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, 5–9 (2008). (PMID: 10.1093/nar/gkn201)
Pillot, M. et al. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22, 307–320 (2010). (PMID: 20139161284541910.1105/tpc.109.071647)
Kalyanikrishna, Mikulski, P. & Schubert, D. Measurement of Arabidopsis thaliana nuclear size and shape. Methods Mol. Biol. 2093, 107–113 (2020). (PMID: 3208889210.1007/978-1-0716-0179-2_8)
Du, G. et al. Spatial dynamics of DNA damage response protein foci along the ion trajectory of high-LET particles. Radiat. Res. 176, 706–715 (2011). (PMID: 2179766510.1667/RR2592.1)
Ollion, J., Cochennec, J., Loll, F., Escude, C. & Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841 (2013). (PMID: 23681123370225110.1093/bioinformatics/btt276)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 2274377210.1038/nmeth.2019)
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (PMID: 22930834555454210.1038/nmeth.2089)
Chen, P. et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev. 27, 2109–2124 (2013). (PMID: 24065740385009510.1101/gad.222174.113)
Luger, K., Rechsteiner, T. J. & Richmond, T. J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999). (PMID: 1037235210.1016/S0076-6879(99)04003-3)
Shimko, J. C., Howard, C. J., Poirier, M. G. & Ottesen, J. J. Preparing semisynthetic and fully synthetic histones h3 and h4 to modify the nucleosome core. Methods Mol. Biol. 981, 177–192 (2013). (PMID: 2338186210.1007/978-1-62703-305-3_14)
Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007). (PMID: 17350582293270110.1016/j.cell.2006.12.041)
Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019). (PMID: 31618757703941010.1038/s41586-019-1669-2)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, 160–165 (2016). (PMID: 10.1093/nar/gkw257)
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). (PMID: 2251742710.1093/bib/bbs017)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033)
Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014). (PMID: 2433622410.1038/nsmb.2735)
Ma, Z. et al. Arabidopsis serrate coordinates histone methyltransferases ATXR5/6 and RNA processing factor RDR6 to regulate transposon expression. Dev. Cell 45, 769–784 (2018). (PMID: 2992028010.1016/j.devcel.2018.05.023)
Li, C. et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687–693 (2016). (PMID: 27111034513432410.1038/ng.3555)
Chen, C. et al. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis. Nat. Plants 3, 814–824 (2017). (PMID: 2894780010.1038/s41477-017-0023-7)
Nassrallah, A. et al. DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife 7, e37892 (2018). (PMID: 30192741612869310.7554/eLife.37892)
Fiorucci, A. S. et al. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biol. 20, 100 (2019). (PMID: 31113491652831310.1186/s13059-019-1705-4)
Stroud, H. et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 109, 5370–5375 (2012). (PMID: 22431625332564910.1073/pnas.1203145109)
Choi, J., Lyons, D. B., Kim, M. Y., Moore, J. D. & Zilberman, D. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts. Mol. Cell 77, 310–323 (2020). (PMID: 3173245810.1016/j.molcel.2019.10.011)
Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013). (PMID: 23540698403530510.1016/j.cell.2013.02.033)
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011). (PMID: 21493656310222110.1093/bioinformatics/btr167)
Santos, M. R., Bispo, C. & Becker, J. D. Isolation of Arabidopsis pollen, sperm cells, and vegetative nuclei by fluorescence-activated cell sorting (FACS). Methods Mol. Biol. 1669, 193–210 (2017). (PMID: 2893666010.1007/978-1-4939-7286-9_16)
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2014). (PMID: 10.1186/gb-2013-14-4-r36)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 2704300210.1038/nbt.3519)
Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017). (PMID: 2858149610.1038/nmeth.4324)
Narsai, R. et al. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol. 18, 172 (2017). (PMID: 28911330559989410.1186/s13059-017-1302-3)
Walker, J. et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat. Genet. 50, 130–137 (2018). (PMID: 2925525710.1038/s41588-017-0008-5)
Tannenbaum, M. et al. Regulatory chromatin landscape in Arabidopsis thaliana roots uncovered by coupling INTACT and ATAC-seq. Plant Methods 14, 113 (2018). (PMID: 30598689630089910.1186/s13007-018-0381-9)
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015). (PMID: 26619908466539110.1186/s13059-015-0831-x)
Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020). (PMID: 33334380774537710.1186/s13059-020-02215-9)
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). (PMID: 25497547563582410.1016/j.cell.2014.11.021)
معلومات مُعتمدة: BBS/E/J/000PR9773 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
المشرفين على المادة: 0 (Chromatin)
0 (Histones)
0 (Protamines)
تواريخ الأحداث: Date Created: 20221103 Date Completed: 20221129 Latest Revision: 20230315
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9668745
DOI: 10.1038/s41586-022-05386-6
PMID: 36323776
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05386-6