دورية أكاديمية

Cytokines in Lung Transplantation.

التفاصيل البيبلوغرافية
العنوان: Cytokines in Lung Transplantation.
المؤلفون: Assadiasl S; Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran. assadiasl@sina.tums.ac.ir., Nicknam MH; Molecular Immunology Research Center, Tehran University of Medical Sciences, No. 142, Nosrat St., Tehran, 1419733151, Iran.; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
المصدر: Lung [Lung] 2022 Dec; Vol. 200 (6), pp. 793-806. Date of Electronic Publication: 2022 Nov 08.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 7701875 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1750 (Electronic) Linking ISSN: 03412040 NLM ISO Abbreviation: Lung Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer Verlag
Original Publication: Heidelberg, Springer International.
مواضيع طبية MeSH: Lung Transplantation*/adverse effects , Bronchiolitis Obliterans*/etiology , Bronchiolitis Obliterans*/prevention & control, Humans ; Cytokines/genetics ; Graft Rejection/genetics ; Graft Rejection/prevention & control ; Transplantation, Homologous
مستخلص: Lung transplantation has developed significantly in recent years, but post-transplant care and patients' survival still need to be improved. Moreover, organ shortage urges novel modalities to improve the quality of unsuitable lungs. Cytokines, the chemical mediators of the immune system, might be used for diagnostic and therapeutic purposes in lung transplantation. Cytokine monitoring pre- and post-transplant could be applied to the prevention and early diagnosis of injurious inflammatory events including primary graft dysfunction, acute cellular rejection, bronchiolitis obliterans syndrome, restrictive allograft syndrome, and infections. In addition, preoperative cytokine removal, specific inhibition of proinflammatory cytokines, and enhancement of anti-inflammatory cytokines gene expression could be considered therapeutic options to improve lung allograft survival. Therefore, it is essential to describe the cytokines alteration during inflammatory events to gain a better insight into their role in developing the abovementioned complications. Herein, cytokine fluctuations in lung tissue, bronchoalveolar fluid, peripheral blood, and exhaled breath condensate in different phases of lung transplantation have been reviewed; besides, cytokine gene polymorphisms with clinical significance have been summarized.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Hardy JD, Webb WR, Dalton ML, Walker GR (1963) Lung homotransplantation in man: report of the initial case. JAMA 186(12):1065–1074. (PMID: 14061414)
Bos S, Vos R, Van Raemdonck DE, Verleden GM (2020) Survival in adult lung transplantation: where are we in 2020? Curr Opin Organ Transplant 25(3):268–273. (PMID: 32332197)
Scheffner I, Gietzelt M, Abeling T, Marschollek M, Gwinner W (2020) Patient survival after kidney transplantation: important role of graft-sustaining factors as determined by predictive modeling using random survival forest analysis. Transplantation 104(5):1095–1107. https://doi.org/10.1097/tp.0000000000002922. (PMID: 10.1097/tp.000000000000292231403555)
Kim W, Lake J, Smith J, Schladt D, Skeans M, Harper A et al (2018) OPTN/SRTR 2016 annual data report: liver. Am J Transplant 18:172–253. (PMID: 29292603)
Wilhelm MJ (2015) Long-term outcome following heart transplantation: current perspective. J Thorac Dis 7(3):549. (PMID: 259227384387387)
Hachem RR (2019) The role of the immune system in lung transplantation: towards improved long-term results. J Thorac Dis 11(Suppl 14):S1721. (PMID: 316327496783723)
Oppenheim JJ (2001) Cytokines: past, present, and future. Int J Hematol 74(1):3–8. https://doi.org/10.1007/BF02982543. (PMID: 10.1007/BF0298254311530802)
Corris P, Kirby J (2005) A role for cytokine measurement in therapeutic monitoring of immunosuppressive drugs following lung transplantation. Clin Exp Immunol 139(2):176–178. (PMID: 156548151809288)
de Perrot M, Fischer S, Liu M, Imai Y, Martins S, Sakiyama S et al (2003) Impact of human interleukin-10 on vector-induced inflammation and early graft function in rat lung transplantation. Am J Respir Cell Mol Biol 28(5):616–625. (PMID: 12707018)
Wollin M, Abele S, Bruns H, Weyand M, Kalden JR, Ensminger SM et al (2009) Inhibition of TNF-α reduces transplant arteriosclerosis in a murine aortic transplant model. Transpl Int 22(3):342–349. https://doi.org/10.1111/j.1432-2277.2008.00802.x. (PMID: 10.1111/j.1432-2277.2008.00802.x19055619)
Andrade CF, Kaneda H, Der S, Tsang M, Lodyga M, Dos Santos CC et al (2006) Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation. J Heart Lung Transplant 25(11):1317–1323. (PMID: 17097495)
De Perrot M, Sekine Y, Fischer S, Waddell TK, McRAE K, Liu M et al (2002) Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 165(2):211–215. (PMID: 11790657)
Kaneda H, Waddell T, De Perrot M, Bai XH, Gutierrez C, Arenovich T et al (2006) Pre-implantation multiple cytokine mRNA expression analysis of donor lung grafts predicts survival after lung transplantation in humans. Am J Transplant 6(3):544–551. (PMID: 16468964)
Varelias A, Gartlan KH, Kreijveld E, Olver SD, Lor M, Kuns RD et al (2015) Lung parenchyma-derived IL-6 promotes IL-17A-dependent acute lung injury after allogeneic stem cell transplantation. Blood 125(15):2435–2444. https://doi.org/10.1182/blood-2014-07-590232. (PMID: 10.1182/blood-2014-07-590232256736405457133)
Xing Z, Jordana M, Gauldie J (1992) IL-1 beta and IL-6 gene expression in alveolar macrophages: modulation by extracellular matrices. Am J Physiol 262(5 Pt 1):L600–L605. https://doi.org/10.1152/ajplung.1992.262.5.L600. (PMID: 10.1152/ajplung.1992.262.5.L6001590409)
Mosharmovahed B, Fatahi Y, Mohebbi B, Ghorbanian SA, Assadiasl S (2020) Tocilizumab in transplantation. Eur J Clin Pharmacol 76(6):765–773. (PMID: 32266480)
Cypel M, Kaneda H, Yeung JC, Anraku M, Yasufuku K, de Perrot M et al (2011) Increased levels of interleukin-1β and tumor necrosis factor-α in donor lungs rejected for transplantation. J Heart Lung Transplant 30(4):452–459. (PMID: 21237675)
Assadiasl S, Mooney N, Nicknam MH (2021) Cytokines in liver transplantation. Cytokine 148:155705. (PMID: 34564024)
Boehler A (2002) The role of interleukin-10 in lung transplantation. Transpl Immunol 9(2–4):121–124. (PMID: 12180818)
Martins S, De Perrot M, Imai Y, Yamane M, Quadri S, Segall L et al (2004) Transbronchial administration of adenoviral-mediated interleukin-10 gene to the donor improves function in a pig lung transplant model. Gene Ther 11(24):1786–1796. (PMID: 15470481)
Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M et al (2009) Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med 1(4):4ra9-4ra9. (PMID: 20368171)
Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun Y-M et al (2012) Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre-and post–lung transplantation in the pig. Mol Ther 20(6):1204–1211. (PMID: 224537653369301)
Yanagisawa J, Shiraishi T, Iwasaki A, Maekawa S, Higuchi T, Hiratuka M et al (2009) PPARα ligand WY14643 reduced acute rejection after rat lung transplantation with the upregulation of IL-4, IL-10 and TGFβ mRNA expression. J Heart Lung Transpl 28(11):1172–1179.
Lee J, Nakagiri T, Kamimura D, Harada M, Oto T, Susaki Y et al (2013) IL-6 amplifier activation in epithelial regions of bronchi after allogeneic lung transplantation. Int Immunol 25(5):319–332. (PMID: 23396843)
Saito T, Takahashi H, Kaneda H, Binnie M, Azad S, Sato M et al (2013) Impact of cytokine expression in the pre-implanted donor lung on the development of chronic lung allograft dysfunction subtypes. Am J Transpl 13(12):3192–3201.
Fisher AJ, Donnelly SC, Hirani N, Haslett C, Strieter RM, Dark JH et al (2001) Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med 163(1):259–265. (PMID: 11208654)
Moreno I, Vicente R, Ramos F, Vicente J, Barbera M (2007) Determination of interleukin-6 in lung transplantation: association with primary graft dysfunction. Transplantation proceedings. Elsevier, Amsterdam, pp 2425–2426.
Verleden SE, Martens A, Ordies S, Neyrinck AP, Van Raemdonck DE, Verleden GM et al (2018) Immediate post-operative broncho-alveolar lavage IL-6 and IL-8 are associated with early outcomes after lung transplantation. Clin Transpl 32(4):e13219.
Moreno I, Mir A, Vicente R, Pajares A, Ramos F, Vicente J et al (2008) Analysis of interleukin-6 and interleukin-8 in lung transplantation: correlation with nitric oxide administration. Transplantation proceedings. Elsevier, Amsterdam, pp 3082–3084.
Slebos D-J, Postma DS, Koëter GH, Van Der Bij W, Boezen M, Kauffman HF (2004) Bronchoalveolar lavage fluid characteristics in acute and chronic lung transplant rejection. J Heart Lung Transpl 23(5):532–540.
Whitehead BF, Stoehr C, Wu CJ, Patterson G, Burchard EG, Theodore J et al (1993) Cytokine gene expression in human lung transplant recipients. Transplantation 56(4):956–961. (PMID: 7692639)
Moudgil A, Bagga A, Toyoda M, Nicolaidou E, Jordan S, Ross D (1999) Expression of Γ-IFN mRNA in bronchoalveolar lavage fluid correlates with early acute allograft rejection in lung transplant recipients. Clin Transpl 13(2):201–207.
Levy L, Huszti E, Ahmed M, Ghany R, Hunter S, Moshkelgosha S et al (2021) Bronchoalveolar lavage cytokine-based risk stratification of minimal acute rejection in clinically stable lung transplant recipients. J Heart Lung Transpl 40(12):1540–1549.
Patella M, Anile M, Del Porto P, Diso D, Pecoraro Y, Onorati I et al (2015) Role of cytokine profile in the differential diagnosis between acute lung rejection and pulmonary infections after lung transplantation. Eur J Cardiothorac Surg 47(6):1031–1036. (PMID: 25344921)
Vanaudenaerde B, De Vleeschauwer S, Vos R, Meyts I, Bullens D, Reynders V et al (2008) The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transpl 8(9):1911–1920.
Verleden SE, Vos R, Mertens V, Willems-Widyastuti A, De Vleeschauwer SI, Dupont LJ et al (2011) Heterogeneity of chronic lung allograft dysfunction: insights from protein expression in broncho alveolar lavage. J Heart Lung Transpl 30(6):667–673.
Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Willems-Widyastuti A, Scheers H, Van Raemdonck DE et al (2009) Circulating and intrapulmonary C-reactive protein: a predictor of bronchiolitis obliterans syndrome and pulmonary allograft outcome. J Heart Lung Transpl 28(8):799–807.
Ross DJ, Moudgil A, Bagga A, Toyoda M, Marchevsky AM, Kass RM et al (1999) Lung allograft dysfunction correlates with γ-interferon gene expression in bronchoalveolar lavage. J Heart Lung Transpl 18(7):627–636.
Verleden SE, Ruttens D, Vos R, Vandermeulen E, Moelants E, Mortier A et al (2015) Differential cytokine, chemokine and growth factor expression in phenotypes of chronic lung allograft dysfunction. Transplantation 99(1):86–93. (PMID: 25050473)
Berastegui C, Gómez-Ollés S, Sánchez-Vidaurre S, Culebras M, Monforte V, López-Meseguer M et al (2017) BALF cytokines in different phenotypes of chronic lung allograft dysfunction in lung transplant patients. Clin Transpl 31(3):e12898.
Belperio JA, DiGiovine B, Keane MP, Burdick MD, Xue YY, Ross DJ et al (2002) Interleukin-1 receptor antagonist as a biomarker for bronchiolitis obliterans syndrome in lung transplant recipients. Transplantation 73(4):591–599. (PMID: 11889437)
Meloni F, Vitulo P, Cascina A, Oggionni T, Bulgheroni A, Paschetto E et al (2004) Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J Heart Lung Transpl 23(9):1053–1060.
Scholma J, Slebos D-J, Marike boezen H, van den Berg JW, van der Bij W, de Boer WJ et al (2000) Eosinophilic granulocytes and interleukin-6 level in bronchoalveolar lavage fluid are associated with the development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med 162(6):2221–2225. (PMID: 11112142)
Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H et al (2007) IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol 178(1):511–519. (PMID: 17182591)
Neujahr D, Perez S, Mohammed A, Ulukpo O, Lawrence E, Fernandez F et al (2012) Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transpl 12(2):438–446.
Magnan A, Mege J-L, Escallier J-C, Brisse J, Capo C, Reynaud M et al (1996) Balance between alveolar macrophage IL-6 and TGF-beta in lung-transplant recipients. Marseille and Montréal Lung Transplantation Group. Am J Respir Crit Care Med 153(4):1431–1436. (PMID: 8616577)
Rizzo M, SivaSai KS, Smith MA, Trulock EP, Lynch JP, Patterson GA et al (2000) Increased expression of inflammatory cytokines and adhesion molecules by alveolar macrophages of human lung allograft recipients with acute rejection: decline with resolution of rejection. J Heart Lung Transpl 19(9):858–865.
Borthwick L, Corris P, Mahida R, Walker A, Gardner A, Suwara M et al (2013) TNFα from classically activated macrophages accentuates epithelial to mesenchymal transition in obliterative bronchiolitis. Am J Transpl 13(3):621–633.
Fisichella PM, Davis CS, Lowery E, Ramirez L, Gamelli RL, Kovacs EJ (2013) Aspiration, localized pulmonary inflammation, and predictors of early-onset bronchiolitis obliterans syndrome after lung transplantation. J Am Coll Surg 217(1):90–100. (PMID: 236282254135482)
Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H et al (2000) Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich lung transplant group. Transplantation 70(2):362–367. https://doi.org/10.1097/00007890-200007270-00022. (PMID: 10.1097/00007890-200007270-0002210933164)
Ramirez AM, Nunley DR, Rojas M, Roman J (2008) Activation of tissue remodeling precedes obliterative bronchiolitis in lung transplant recipients. Biomarker Insights 3:BMI.S686.
Hodge G, Hodge S, Reynolds PN, Holmes M (2005) Increased intracellular pro-and anti-inflammatory cytokines in bronchoalveolar lavage T cells of stable lung transplant patients. Transplantation 80(8):1040–1045. (PMID: 16278583)
Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M (2007) Acute lung transplant rejection is associated with localized increase in T-cell IFNγ and TNFα proinflammatory cytokines in the airways. Transplantation 84(11):1452–1458. (PMID: 18091521)
Iacono A, Dauber J, Keenan R, Spichty K, Cai J, Grgurich W et al (1997) Interleukin 6 and interferon-γ gene expression in lung transplant recipients with refractory acute cellular rejection: implications for monitoring and inhibition by treatment with aerosolized cyclosporine. Transplantation 64(2):263–269. (PMID: 9256185)
Suwara MI, Vanaudenaerde BM, Verleden SE, Vos R, Green NJ, Ward C et al (2014) Mechanistic differences between phenotypes of chronic lung allograft dysfunction after lung transplantation. Transpl Int 27(8):857–867. (PMID: 24750386)
Shankar J, Nguyen M, Crespo M, Kwak E, Lucas S, McHugh K et al (2016) Looking beyond respiratory cultures: microbiome-cytokine signatures of bacterial pneumonia and tracheobronchitis in lung transplant recipients. Am J Transpl 16(6):1766–1778.
Stjärne Aspelund A, Hammarström H, Inghammar M, Larsson H, Hansson L, Christensson B et al (2018) Heparin-binding protein, lysozyme, and inflammatory cytokines in bronchoalveolar lavage fluid as diagnostic tools for pulmonary infection in lung transplanted patients. Am J Transpl 18(2):444–452.
Hallsten J, Vigneswaran WT (2019) Cytokine biomarkers as indicators of primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction in lung transplant recipients: a review. Perioper Care Organ Transpl Recipient. https://doi.org/10.5772/intechopen.84661. (PMID: 10.5772/intechopen.84661)
Mal H, Dehoux M, Sleiman C, Boczkowski J, Lesèche G, Pariente R et al (1998) Early release of proinflammatory cytokines after lung transplantation. Chest 113(3):645–651. (PMID: 9515837)
Mathur A, Baz M, Staples ED, Bonnell M, Speckman JM, Hess PJ Jr et al (2006) Cytokine profile after lung transplantation: correlation with allograft injury. Ann Thorac Surg 81(5):1844–1850. (PMID: 16631683)
Hoffman S, Wang L, Shah CV, Ahya V, Pochettino A, Olthoff K et al (2009) Plasma cytokines and chemokines in primary graft dysfunction post-lung transplantation. Am J Transpl 9(2):389–396.
Pham S, Yoshida Y, Aeba R, Hattler B, Iwaki Y, Zeevi A et al (1992) Interleukin-6, a marker of preservation injury in clinical lung transplantation. J Heart Lung Transpl 11(6):1017–1024.
Hodge G, Hodge S, Li-Liew C, Chambers D, Hopkins P, Reynolds P et al (2010) Time post-lung transplant correlates with increasing peripheral blood T cell granzyme B and proinflammatory cytokines. Clin Exp Immunol 161(3):584–590. (PMID: 205288842962978)
Hodge G, Hodge S, LI-Liew C, Reynolds PN, Holmes M (2012) Increased natural killer T-like cells are a major source of pro-inflammatory cytokines and granzymes in lung transplant recipients. Respirology 17(1):155–163. (PMID: 21995313)
Hodge G, Hodge S, Reynolds P, Holmes M (2005) Intracellular cytokines in blood T cells in lung transplant patients–a more relevant indicator of immunosuppression than drug levels. Clin Exp Immunol 139(1):159–164. (PMID: 156066271809265)
Hodge G, Hodge S, Reynolds PN, Holmes M (2006) Compartmentalization of intracellular proinflammatory cytokines in bronchial intraepithelial T cells of stable lung transplant patients. Clin Exp Immunol 145(3):413–419. (PMID: 169079081809705)
Hodge G, Hodge S, Reynolds PN, Holmes M (2005) Up-regulation of interleukin-8, interleukin-10, monocyte chemotactic protein-1, and monocyte chemotactic protein-3 in peripheral blood monocytes in stable lung transplant recipients: are immunosuppression regimens working? Transplantation 79(4):387–391. (PMID: 15729163)
Teixeira R, Antonangelo L, Vargas F, Caramori M, Afonso J Jr, Acencio M et al (2010) Cytokine profile in pleural fluid and serum after lung transplantation. Transplantation proceedings. Elsevier, Amsterdam, pp 531–534.
Hall DJ, Baz M, Daniels MJ, Staples ED, Klodell CT, Moldawer LL et al (2012) Immediate postoperative inflammatory response predicts long-term outcome in lung-transplant recipients. Interact Cardiovasc Thorac Surg 15(4):603–607. (PMID: 228153233445394)
Yoshida Y, Iwaki Y, Pham S, Dauber JH, Yousem SA, Zeevi A et al (1993) Benefits of posttransplantation monitoring of interleukin 6 in lung transplantation. Ann Thorac Surg 55(1):89–93. (PMID: 8417717)
Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M (2009) Bronchiolitis obliterans syndrome is associated with absence of suppression of peripheral blood Th1 proinflammatory cytokines. Transplantation 88(2):211–218. (PMID: 19623016)
Fan L, Benson HL, Vittal R, Mickler EA, Presson R, Fisher AJ et al (2011) Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transpl 11(5):911–922.
Horváth I, Hunt J, Barnes PJ (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26(3):523–548. (PMID: 16135737)
Antus B, Barta I, Czebe K, Horvath I, Csiszer E (2010) Analysis of cytokine pattern in exhaled breath condensate of lung transplant recipients with bronchiolitis obliterans syndrome. Inflamm Res 59(1):83–86. (PMID: 20066781)
Kastelijn EA, Rijkers GT, Van Moorsel CH, Zanen P, Kwakkel-van Erp JM, Van De Graaf EA et al (2010) Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome. J Heart Lung Transpl 29(9):997–1008.
Lu KC, Jaramillo A, Lecha RL, Schuessler RB, Aloush A, Trulock EP et al (2002) Interleukin-6 and interferon-gamma gene polymorphisms in the development of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 74(9):1297–1302. https://doi.org/10.1097/00007890-200211150-00017. (PMID: 10.1097/00007890-200211150-0001712451269)
Snyder LD, Hartwig MG, Ganous T, Davis RD, Herczyk WF, Reinsmoen NL et al (2006) Cytokine gene polymorphisms are not associated with bronchiolitis obliterans syndrome or survival after lung transplant. J Heart Lung Transpl 25(11):1330–1335.
Awad M, Pravica V, Perrey C, El Gamel A, Yonan N, Sinnott PJ et al (1999) CA repeat allele polymorphism in the first intron of the human interferon-γ gene is associated with lung allograft fibrosis. Hum Immunol 60(4):343–346. (PMID: 10363726)
Mu HJ, Xie P, Chen JY, Gao F, Zou J, Zhang J et al (2014) Association of TNF-α, TGF-β1, IL-10, IL-6, and IFN-γ gene polymorphism with acute rejection and infection in lung transplant recipients. Clin Transpl 28(9):1016–1024.
Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-β1 gene: association with transforming growth factor-β1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66(8):1014–1020. (PMID: 9808485)
Zheng HX, Burckart GJ, McCurry K, Webber S, Ristich J, Iacono A et al (2004) Interleukin-10 production genotype protects against acute persistent rejection after lung transplantation. J Heart Lung Transpl 23(5):541–546.
Assadiasl S, Fatahi Y, Mosharmovahed B, Mohebbi B, Nicknam MH (2021) Baricitinib: from rheumatoid arthritis to COVID-19. J Clin Pharmacol 61(10):1274–1285. https://doi.org/10.1002/jcph.1874. (PMID: 10.1002/jcph.1874338705318250677)
Assadiasl S, Ahmadpoor P, Nafar M, Lessan Pezeshki M, Pourrezagholi F, Parvin M et al (2014) Regulatory T cell subtypes and TGF-β1 gene expression in chronic allograft dysfunction. Iran J Immunol 11(3):139–152. (PMID: 25266000)
Zhao SQ, Xue ZZ, Wang LZ (2017) HMGB1, TGF-β and NF-κB are associated with chronic allograft nephropathy. Exp Ther Med 14(6):6138–6146. https://doi.org/10.3892/etm.2017.5319. (PMID: 10.3892/etm.2017.5319292851705740786)
Watanabe T, Cypel M, Keshavjee S (2021) Ex vivo lung perfusion. J Thorac Dis 13(11):6602–6617. https://doi.org/10.21037/jtd-2021-23. (PMID: 10.21037/jtd-2021-23349928398662477)
Sage AT, Richard-Greenblatt M, Zhong K, Bai XH, Snow MB, Babits M et al (2021) Prediction of donor related lung injury in clinical lung transplantation using a validated ex vivo lung perfusion inflammation score. J Heart Lung Transpl 40(7):687–695.
Iskender I, Cosgun T, Arni S, Trinkwitz M, Fehlings S, Yamada Y et al (2018) Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J Heart Lung Transpl 37(2):283–291.
فهرسة مساهمة: Keywords: Bronchiolitis obliterans; Cytokines; Graft rejection; Lung transplantation; Primary graft dysfunction
المشرفين على المادة: 0 (Cytokines)
تواريخ الأحداث: Date Created: 20221108 Date Completed: 20221122 Latest Revision: 20221228
رمز التحديث: 20231215
DOI: 10.1007/s00408-022-00588-1
PMID: 36348053
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1750
DOI:10.1007/s00408-022-00588-1